New Insights into the Cytotoxic Mechanism of Hexabromocyclododecane from a Metabolomic Approach
详细信息    查看全文
文摘
The toxic effects of hexabromocyclododecane (HBCD) are complex, and the underlying toxicological mechanisms are still not completely understood. In this study, a pseudotargeted metabolomic approach based on the UHPLC/Q-Trap MS system was developed to assess the HBCD-intervention-related metabolic alteration in HepG2 cells. In addition, some physiologic indicators and relevant enzyme activities were measured. HBCD exposure obviously impaired metabolic homeostasis and induced oxidative stress, even at an environmentally relevant dose (0.05 mg/L). Metabolic profiling and multivariate analysis indicated that the main metabolic pathways perturbed by HBCD included amino acid metabolism, protein biosynthesis, fatty acid metabolism, and phospholipid metabolism. HBCD suppressed the cell uptake of amino acids, mainly through inhibition of the activity of membrane transport protein Na+/K+-ATPase. HBCD down-regulated glycolysis and β-oxidation of long-chain fatty acids, causing a large decrease of ATP production. As a result, the across-membrane transport of amino acids was further inhibited. Meanwhile, HBCD induced a significant increase of total phospholipids, mainly through the remodeling of phospholipids from the increased free fatty acids. The obtained metabolomic results also provided some new evidence and clues regarding the toxicological mechanisms of HBCD that contribute to obesity, diabetes, nervous system damage, and developmental disorders.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.