High Efficiency Inverted Planar Perovskite Solar Cells with Solution-Processed NiOx Hole Contact
详细信息    查看全文
文摘
NiOx is a promising hole-transporting material for perovskite solar cells due to its high hole mobility, good stability, and easy processability. In this work, we employed a simple solution-processed NiOx film as the hole-transporting layer in perovskite solar cells. When the thickness of the perovskite layer increased from 270 to 380 nm, the light absorption and photogenerated carrier density were enhanced and the transporting distance of electron and hole would also increase at the same time, resulting in a large charge transfer resistance and a long hole-extracted process in the device, characterized by the UV–vis, photoluminescence, and electrochemical impedance spectroscopy spectra. Combining both of these factors, an optimal thickness of 334.2 nm was prepared with the perovskite precursor concentration of 1.35 M. Moreover, the optimal device fabrication conditions were further achieved by optimizing the thickness of NiOx hole-transporting layer and PCBM electron selective layer. As a result, the best power conversion efficiency of 15.71% was obtained with a Jsc of 20.51 mA·cm–2, a Voc of 988 mV, and a FF of 77.51% with almost no hysteresis. A stable efficiency of 15.10% was caught at the maximum power point. This work provides a promising route to achieve higher efficiency perovskite solar cells based on NiO or other inorganic hole-transporting materials.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.