Highly Efficient and Low Turn-On Voltage Quantum Dot Light-Emitting Diodes by Using a Stepwise Hole-Transport Layer
详细信息    查看全文
文摘
Highly efficient red quantum dot light-emitting diodes (QD-LEDs) with a very high current efficiency of 16 cd/A were demonstrated by adopting stepwise hole-transport layers (HTLs) consisting of 4,4鈥?N,N鈥?dicarbazole-biphenyl (CBP) combined with N,N鈥?dicarbazolyl-3,5-benzene (mCP). The mCP layer plays two important roles in this kind of QD-LEDs. One is that it can block the electron to leak into the HTL due to its higher LUMO (LUMO = the lowest unoccupied molecular orbital) energy level than that of CBP; and the other is it can separate the carrier accumulation zone from the exciton formation interface, which is attributed to the stepwise hole-transport layer structure. Moreover, the lower HOMO (HOMO = the highest occupied molecular orbital) energy level of mCP decreases the hole-injection barrier from the HTL to the QD emitting layer, which improves the charge carrier balance injected into the QD layer, reducing the turn-on voltage of QD-LEDs fabricated with the stepwise HTL structure.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.