Rapid Destruction of Tetrabromobisphenol A by Iron(III)-Tetraamidomacrocyclic Ligand/Layered Double Hydroxide Composite/H2O2 System
详细信息    查看全文
  • 作者:Chao Wang ; Juan Gao ; Cheng Gu
  • 刊名:Environmental Science & Technology
  • 出版年:2017
  • 出版时间:January 3, 2017
  • 年:2017
  • 卷:51
  • 期:1
  • 页码:488-496
  • 全文大小:518K
  • ISSN:1520-5851
文摘
Iron(III)-tetraamidomacrocyclic ligand (Fe(III)-TAML) activators have received widespread attentions for their abilities to activate hydrogen peroxide to oxidize many organic pollutants. In this study, Fe(III)-TAML/layered double hydroxide (LDH) composite was developed by intercalating Fe(III)-TAML into the interlayer of LDH. Electrostatic interaction and hydrogen bonding might account for the adsorption of Fe(III)-TAML on LDH. The newly synthesized Fe(III)-TAML/LDH composite showed superior reactivity as indicated by efficient decomposition of tetrabromobisphenol A (TBBPA) in the presence of hydrogen peroxide, which can be fully degraded within 20 s and the degradation rate increased up to 8 times compared to free Fe(III)-TAML. In addition, the toxicity of the system was significantly reduced after the reaction. The higher reactivity of Fe(III)-TAML/LDH system is attributed to the enhanced adsorption of TBBPA on LDH, which could increase the contact possibility between Fe(III)-TAML and TBBPA. On the basis of the analysis of reaction intermediates, β-scission at the middle carbon atom and C–Br bond cleavage in phenyl ring of TBBPA were involved in the degradation process. Furthermore, our results demonstrated that the Fe(III)-TAML/LDH composite can be reused several times, which could lower the overall cost for environmental implication and render Fe(III)-TAML/LDH as the potential environmentally friendly catalyst for future wastewater treatment under mild reaction conditions.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.