Reduction of Nano-Cu2O: Crystallite Size Dependent and the Effect of Nano-Ceria Support
详细信息    查看全文
文摘
Copper(I) oxide (Cu2O) is an effective catalyst in the CO oxidation reaction. While high surface to volume ratio in nanoparticles will increase their catalytic efficiency, it posts a stability problem. Here we study the stability of nano-cuprite against reduction as a function of its crystallite size and upon interaction with a nano-ceria support. A systematic analysis of isothermal reduction of a series size of monodispersed Cu2O nanocrystals (卤7%) with time-resolved X-ray diffraction (TR-XRD) provides the time-resolved phase fraction of Cu2O and the time when reduction product of Cu (fcc) first appears. The initial phase fraction of nano-Cu2O is less than one with the balance attributed to an amorphous CuO shell. Since no peaks of crystalline CuO (monoclinic) were observed, a core鈥搒hell structure with an amorphous CuO shell is proposed. From the analysis, Cu2+ content in corresponding to shell increases from 0 to 33% as Cu2O decreases to 8 nm from the bulk. Based on the reduction profiles, a time size reduction (TSR) diagram is constructed for the observed Cu2O phase behavior during reduction. The incorporation onto a nano-CeO2 support (7 nm) significantly stabilizes our nano-Cu2O in a reducing atmosphere. The oxygen supply propensity in terms of oxygen nonstoichiometry of CeO2鈥?i>y is shown to be lower when a larger crystallite size CeO2 (20 nm) support is used. The larger oxygen capacity in smaller nano-CeO2 support is analyzed and explained by the 鈥淢adelung model鈥?with size-dependent bulk modulus of nano-ceria.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.