Tailored Magnetic and Magnetoelectric Responses of Polymer-Based Composites
详细信息    查看全文
文摘
The manipulation of electric ordering with applied magnetic fields has been realized on magnetoelectric (ME) materials; however, their ME switching is often accompanied by significant hysteresis and coercivity that represents for some applications a severe weakness. To overcome this obstacle, this work focuses on the development of a new type of ME polymer nanocomposites that exhibits a tailored ME response at room temperature. The multiferroic nanocomposites are based on three different ferrite nanoparticles, Zn0.2Mn0.8Fe2O4 (ZMFO), CoFe2O4 (CFO) and Fe3O4 (FO), dispersed in a piezoelectric copolymer poly(vinylindene fluoride-trifluoroethylene) (P(VDF-TrFE)) matrix. No substantial differences were detected in the time-stable piezoelectric response of the composites (鈭?鈭?8 pC路N1鈥?/sup>) with distinct ferrite fillers and for the same ferrite content of 10 wt %. Magnetic hysteresis loops from pure ferrite nanopowders showed different magnetic responses. ME results of the nanocomposite films with 10 wt % ferrite content revealed that the ME induced voltage increases with increasing dc magnetic field until a maximum of 6.5 mV路cm鈥?路Oe1鈥?/sup>, at an optimum magnetic field of 0.26 T, and 0.8 mV路cm鈥?路Oe1鈥?/sup>, at an optimum magnetic field of 0.15T, for the CFO/P(VDF-TrFE) and FO/P(VDF-TrFE) composites, respectively. In contrast, the ME response of ZMFO/P(VDF-TrFE) exposed no hysteresis and high dependence on the ZMFO filler content. Possible innovative applications such as memories and information storage, signal processing, and ME sensors and oscillators have been addressed for such ferrite/PVDF nanocomposites.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.