Reversible Plasmonic Circular Dichroism via Hybrid Supramolecular Gelation of Achiral Gold Nanorods
详细信息    查看全文
  • 作者:Xue Jin ; Jian Jiang ; Minghua Liu
  • 刊名:ACS Nano
  • 出版年:2016
  • 出版时间:December 27, 2016
  • 年:2016
  • 卷:10
  • 期:12
  • 页码:11179-11186
  • 全文大小:455K
  • ISSN:1936-086X
文摘
The fabrication of chiroptical plasmonic nanomaterials such as chiral plasmonic gold nanorods (GNRs) has been attracting great interest. Generally, in order to realize the plasmonic circular dichroism (PCD) from achiral GNRs, it is necessary to partially replace the surface-coated cetyltrimethylammonium bromide with chiral molecules. Here, we present a supramolecular approach to generate and modulate the PCD of GNRs through the hybrid gelation of GNRs with an amphiphilic chiral dendron gelator. Upon gelation, the PCD could be produced and further regulated depending on the ratio of the dendrons to GNRs. It was revealed that the wrapping of the self-assembled nanofibers around the GNRs is crucial for generating the PCD. Furthermore, the hybrid gel underwent a thermotriggered gel–sol and sol–gel transformation, during which the PCD can disappear (solution) and reappear (gel), respectively, and such process can be repeated many times. In addition, the hybrid gel could also undergo shrinkage upon addition of a slight amount of Mg2+ ions, during which the PCD disappeared also. Thus, through the gel formation and subsequent metal ion- or temperature-triggered phase transition, PCD can be reversibly modulated. The results not only clarified the generation mechanism of PCD from the achiral GNRs without the chiral modification on the surface but also offered a simple and efficient way to modulate the PCD.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.