Carbon-Nanohorn-Reinforced Polymer Matrix Composites: Synergetic Benefits in Mechanical Properties
详细信息    查看全文
文摘
Mechanical properties of single-walled carbon nanohorns (SWNH) and SWNH plus few-layer graphene (EG)-reinforced poly(vinyl alcohol) (PVA) matrix composites have been measured using the nanoindentation technique. The elastic modulus (E) and hardness (H) of PVA were found to improve by 鈭?15% and 鈭?35%, respectively, upon the addition of just 0.4 wt鈥? SWNH. These properties were found to be comparable to those obtained upon the addition of 0.2 wt鈥? single-walled nanotubes (SWNT) to PVA. Furthermore, upon binary addition of 0.2 wt鈥? EG and 0.4 wt鈥? SWNH to PVA, benefits in the form of 鈭?00% and 鈭?30% synergy in E and H, respectively, were observed, along with an increased resistance to viscoelastic deformation. The reasons for these improvements are discussed in terms of the dimensionality of nanocarbon, the effectiveness of nanocarbon and polymer matrix interaction, and the influence of nanocarbon on the degree of crystallinity of the polymer. The results from SWNH reinforcement in this study demonstrate the scope for a novel and, in contrast to SWNT composites, a commercially feasible opportunity for strengthening polymer matrices.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.