Effect of Precursor Selection on the Photocatalytic Performance of Indium Oxide Nanomaterials for Gas-Phase CO2 Reduction
详细信息    查看全文
文摘
Nonstoichiometric indium oxide nanoparticles, In2O3–x(OH)y, have been shown to function as active photocatalysts for gas-phase CO2 reduction under simulated solar irradiation. Herein we demonstrate that the choice of starting material has a strong effect on the photocatalytic activity of indium oxide nanoparticles. We examine three indium oxide materials prepared via the thermal decomposition of either indium(III) hydroxide or indium(III) nitrate and correlate their stability and photocatalytic activity to the number and type of defect present in the material. Further, we use 13CO2 isotope-tracing experiments to clearly identify the origins of the observed carbon-containing products. Significantly, we find that the oxidizing nature of the precursor anion has a substantial impact on the defect formation within the sample. This study demonstrates the importance of surface defects in designing an active heterogeneous photocatalyst and provides valuable insight into key parameters for the precursor design, selection, and performance optimization of materials for gas-phase CO2 reduction.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.