In Situ Hydrothermally Grown TiO2@C Core–Shell Nanowire Coating for Highly Sensitive Solid Phase Microextraction of Polycyclic Aromatic Hydrocarbons
详细信息    查看全文
文摘
Nanostructured materials have great potential for solid phase microextraction (SPME) on account of their tiny size, distinct architectures and superior physical and chemical properties. Herein, a core–shell TiO2@C fiber for SPME was successfully fabricated by the simple hydrothermal reaction of a titanium wire and subsequent amorphous carbon coating. The readily hydrothermal procedure afforded in situ synthesis of TiO2 nanowires on a titanium wire and provided a desirable substrate for further coating of amorphous carbon. Benefiting from the much larger surface area of subsequent TiO2 and good adsorption property of the amorphous carbon coating, the core–shell TiO2@C fiber was utilized for the SPME device for the first time and proved to have better performance in extraction of polycyclic aromatic hydrocarbons. In comparison to the polydimethylsiloxane (PDMS) and PDMS/divinylbenzene (DVB) fiber for commercial use, the TiO2@C fiber obtained gas chromatography responses 3–8 times higher than those obtained by the commercial 100 μm PDMS and 1–9 times higher than those obtained by the 65 μm PDMS/DVB fiber. Under the optimized extraction conditions, the low detection limits were obtained in the range of 0.4–7.1 ng L–1 with wider linearity in the range of 10–2000 ng L–1. Moreover, the fiber was successfully used for the determination of polycyclic aromatic hydrocarbons in Pearl River water, which demonstrated the applicability of the core–shell TiO2@C fiber.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.