Angular-Shaped 4,10-Dialkylanthradiselenophene and Its Donor鈥揂cceptor Conjugated Polymers: Synthesis, Physical, Transistor, and Photovoltaic Properties
详细信息    查看全文
文摘
An angular-shaped and isomerically pure 4,10-di(2-octyl)dodecylanthradiselenophene (aADS) was successfully developed. The expedient synthesis to form the framework of aADS with two lateral side chains regioselectively at its 4,10-positions is via a base-induced propargyl鈥揳llenyl isomerization/6蟺-electrocyclization/aromatization protocol. This pentacyclic distannylated aADS unit was then copolymerized with dithienyldiketopyrrolopyrrole (DPP) and dithienyl-5,6-difluoro-2,1,3-benzothiadiazole (DTFBT) acceptors with different alkyl side chains to afford four donor鈥揳cceptor copolymers: PaADSDPP, PaADSDTFBT-C4, PaADSDTFBT-C8, and PaADSDTFBT-C8C12. UV鈥搗is spectroscopy and cyclic voltammetry revealed that PaADSDPP has the narrowest energy band gap, and PaADSDTFBT-C8C12 has larger band gap than PaADSDTFBT-C4 and PaADSDTFBT-C8. Two layer ONIOM (our own n-layered integrated molecular orbital and molecular mechanics) calculations were implemented to investigate the disparity in optical, electrochemical, and device properties between these polymers. Both experimental and theoretical data suggest that the aliphatic side chains play a significant role in determining the physical, transistor, and photovoltaic properties of the polymers. PaADSDTFBT-C4 and PaADSDTFBT-C8 exhibited organic-field-effect-transistor hole mobilities of 2.7 脳 10鈥? and 1.0 脳 10鈥? cm2 V鈥? s鈥?, greatly outperforming that of PaADSDTFBT-C8C12 with a mobility of 5.4 脳 10鈥? cm2 V鈥? s鈥?. Polymer solar cells were fabricated on the basis of ITO/PEDOT:PSS/polymer:PC71BM/Ca/Al configuration. The efficiency decreased as the increase of bulkiness of the aliphatic side chains installed on DTFBT units (4.4% for PaADSDTFBT-C4, 3.5% for PaADSDTFBT-C8, 0.3% for PaADSDTFBT-C8C12). Atomic force microscopy images reveal that the degree of aggregation for the polymer:fullerene blends is influenced significantly by the bulkiness of aliphatic side chain installed on DTFBT. Noticeable aggregation was found for the PaADSDTFBT-C8C12:PC71BM blend. These results are in good agreement with the computational results elucidating that the intermolecular interactions between the polymers and PC71BM are sterically hindered by the bulky 2-octyldodecyl groups. This work not only presents a promising selenophene-based aADS building block but also provides insights into the side-chain engineering for donor鈥揳cceptor conjugated copolymers.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.