Synthesis and Photophysical Study of a [NiFe] Hydrogenase Biomimetic Compound Covalently Linked to a Re-diimine Photosensitizer
详细信息    查看全文
文摘
The synthesis, photophysics, and photochemistry of a linked dyad ([Re]-[NiFe2]) containing an analogue ([NiFe2]) of the active site of [NiFe] hydrogenase, covalently bound to a Re-diimine photosensitizer ([Re]), are described. Following excitation, the mechanisms of electron transfer involving the [Re] and [NiFe2] centers and the resulting decomposition were investigated. Excitation of the [Re] center results in the population of a diimine-based metal-to-ligand charge transfer excited state. Reductive quenching by NEt3 produces the radically reduced form of [Re], [Re]? (kq = 1.4 ± 0.1 × 107 M–1 s–1). Once formed, [Re]? reduces the [NiFe2] center to [NiFe2]?, and this reduction was followed using time-resolved infrared spectroscopy. The concentration dependence of the electron transfer rate constants suggests that both inter- and intramolecular electron transfer pathways are involved, and the rate constants for these processes have been estimated (kinter = 5.9 ± 0.7 × 108 M–1 s–1, kintra = 1.5 ± 0.1 × 105 s–1). For the analogous bimolecular system, only intermolecular electron transfer could be observed (kinter = 3.8 ± 0.5 × 109 M–1 s–1). Fourier transform infrared spectroscopic studies confirms that decomposition of the dyad occurs upon prolonged photolysis, and this appears to be a major factor for the low activity of the system toward H2 production in acidic conditions.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.