Indium–Tin–Oxide Nanowire Array Based CdSe/CdS/TiO2 One-Dimensional Heterojunction Photoelectrode for Enhanced Solar Hydrogen Production
详细信息    查看全文
文摘
For photoelectrochemical (PEC) hydrogen production, low charge transport efficiency of a photoelectrode is one of the key factors that largely limit PEC performance enhancement. Here, we report a tin-doped indium oxide (In2O3:Sn, ITO) nanowire array (NWs) based CdSe/CdS/TiO2 multishelled heterojunction photoelectrode. This multishelled one-dimensional (1D) heterojunction photoelectrode shows superior charge transport efficiency due to the negligible carrier recombination in ITO NWs, leading to a greatly improved photocurrent density (∼16.2 mA/cm2 at 1.0 V vs RHE). The ITO NWs with an average thickness of ∼12 μm are first grown on commercial ITO/glass substrate by a vapor–liquid–solid method. Subsequently, the TiO2 and CdSe/CdS shell layers are deposited by an atomic layer deposition (ALD) and a chemical bath deposition method, respectively. The resultant CdSe/CdS/TiO2/ITO NWs photoelectrode, compared to a planar structure with the same configuration, shows improved light absorption and much faster charge transport properties. More importantly, even though the CdSe/CdS/TiO2/ITO NWs photoelectrode has lower CdSe/CdS loading (i.e., due to its lower surface area) than the mesoporous TiO2 nanoparticle based photoelectrode, it shows 2.4 times higher saturation photocurrent density, which is attributed to the superior charge transport and better light absorption by the 1D ITO NWs.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.