Low-Cost and Effective Fabrication of Biocompatible Nanofibers from Silk and Cellulose-Rich Materials
详细信息    查看全文
文摘
Here, we show the production of nanofibrous mats with controlled mechanical properties and excellent biocompatibility by combining fibroin with pure cellulose and cellulose-rich parsley powder agro-waste. To this end, trifluoroacetic acid was used as a common solvent for all of the involved biomaterials, achieving highly homogeneous blends that were suitable for the electrospinning technique. Morphological analysis revealed that the electrospun composite nanofibers were well-defined and defect-free, with a diameter in the range of 65–100 nm. Mechanical investigations demonstrated that the fibrous mats exhibited an increased stiffness when pure fibroin was combined with cellulose, whereas they possessed an increased flexibility when the parsley waste was added to fibroin. Lastly, the produced mats were highly biocompatible, as demonstrated by the promoted proliferation of fibroblast cells. The characteristics of the hybrid fibroin–cellulose nanofibers, in terms of nanoscale topography, mechanical properties, and biocompatibility, are attractive and potentially applicable in the biomedical sector.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.