Nanoimprinted Perovskite Nanograting Photodetector with Improved Efficiency
详细信息    查看全文
文摘
Recently, organolead halide-based perovskites have emerged as promising materials for optoelectronic applications, particularly for photovoltaics, photodetectors, and lasing, with low cost and high performance. Meanwhile, nanoscale photodetectors have attracted tremendous attention toward realizing miniaturized optoelectronic systems, as they offer high sensitivity, ultrafast response, and the capability to detect beyond the diffraction limit. Here we report high-performance nanoscale-patterned perovskite photodetectors implemented by nanoimprint lithography (NIL). The spin-coated lead methylammonium triiodide perovskite shows improved crystallinity and optical properties after NIL. The nanoimprinted metal–semiconductor–metal photodetectors demonstrate significantly improved performance compared to the nonimprinted conventional thin-film devices. The effects of NIL pattern geometries on the optoelectronic characteristics were studied, and the nanograting pattern based photodetectors demonstrated the best performance, showing approximately 35 times improvement on responsivity and 7 times improvement on on/off ratio compared with the nonimprinted devices. The high performance of NIL-nanograting photodetectors likely results from high crystallinity and favored nanostructure morphology, which contribute to higher mobility, longer diffusion length, and better photon absorption. Our results have demonstrated that the NIL is a cost-effective method to fabricate high-performance perovskite nanoscale optoelectronic devices, which may be suitable for manufacturing of high-density perovskite nanophotodetector arrays and to provide integration with state-of-the-art electronic circuits.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.