Cobalt-Catalyzed Regiodivergent Hydrosilylation of Vinylarenes and Aliphatic Alkenes: Ligand- and Silane-Dependent Regioselectivities
详细信息    查看全文
  • 作者:Chao Wang ; Wei Jie Teo ; Shaozhong Ge
  • 刊名:ACS Catalysis
  • 出版年:2017
  • 出版时间:January 6, 2017
  • 年:2017
  • 卷:7
  • 期:1
  • 页码:855-863
  • 全文大小:748K
  • ISSN:2155-5435
文摘
We report a regiodivergent hydrosilylation of alkenes catalyzed by catalysts generated in situ from bench-stable Co(acac)2 and phosphine- or nitrogen-based ligands. A wide range of vinylarenes and aliphatic alkenes reacted to afford either branched (45 examples) or linear (37 examples) organosilanes in high isolated yields (average: 84%) and high regioselectivities (from 91:9 to >99:1). This transformation tolerates a variety of functional groups including ether, silyloxy, thioether, epoxide, halogen, amine, ester, boronic ester, acetal, cyano, and ketone moieties. Mechanistic studies suggested that the hydrosilylation of alkenes catalyzed by the cobalt/bisphosphine system follows the Chalk–Harrod mechanism (with a Co–H intermediate), and the hydrosilylation of alkenes catalyzed by the cobalt/pyridine-2,6-diimine system follows the modified Chalk–Harrod mechanism (with a Co–Si intermediate). Systematic studies with sterically varied silanes revealed that the steric properties of silanes play a pivotal role in controlling the regioselectivity of vinylarene hydrosilylation and the chemoselectivity of the reactions of aliphatic alkenes and silanes catalyzed by the cobalt/pyridine-2,6-diimine system.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.