Development of a Proton-Transfer Reaction-Linear Ion Trap Mass Spectrometer for Quantitative Determination of Volatile Organic Compounds
详细信息    查看全文
文摘
Currently, proton-transfer reaction mass spectrometry (PTR-MS) allows for quantitative determination of volatile organic compounds in real time at concentrations in the low ppt range, but cannot differentiate isomers or isobaric molecules, using the conventional quadrupole mass filter. Here we pursue the application of linear quadrupole ion trap (LIT) mass spectrometry in combination with proton-transfer reaction chemical ionization to provide the advantages of specificity from MS/MS. A commercial PTR-MS platform composed of a quadrupole mass filter with the addition of end cap electrodes enabled the mass filter to operate as a linear ion trap. The rf drive electronics were adapted to enable the application of dipolar excitation to opposing rods, for collision-induced dissociation (CID) of trapped ions. This adaptation enabled ion isolation, ion activation, and mass analysis. The utility of the PTR-LIT was demonstrated by distinguishing between the isomeric isoprene oxidation pair, methyl vinyl ketone (MVK) and methacrolein (MACR). The CID voltage was adjusted to maximize the m/z 41 to 43 fragment ratio of MACR while still maintaining adequate sensitivity. Linear calibration curves for MVK and MACR fragments at m/z 41 and 43 were obtained with limits of detection of ∼100 ppt, which should enable ambient measurements. Finally, the PTR-LIT method was compared to an established GC/MS method by quantifying MVK and MACR production during a smog chamber isoprene−NOx irradiation experiment.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.