Shape transition and multi-stability of helical ribbons: a finite element method study
详细信息    查看全文
  • 作者:Zi Chen (1)

    1. Thayer School of Engineering
    ; Dartmouth College ; Hanover ; NH ; 03755 ; USA
  • 关键词:Helical structures ; Elasticity theory ; Finite element method ; Bistability ; Biomimetic structures
  • 刊名:Archive of Applied Mechanics (Ingenieur Archiv)
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:85
  • 期:3
  • 页码:331-338
  • 全文大小:1,020 KB
  • 参考文献:1. Chouaieb N., Goriely A., Maddocks J.H.: Helices. Proc. Natl. Acad. Sci. USA 103, 9398鈥?430 (2006) CrossRef
    2. Biton Y.Y., Coleman B.D., Swigon D.: On bifurcations of equilibria of intrinsically curved, electrically charged, rod-like structures that model DNA molecules in solution. J. Elast. 87, 187鈥?10 (2007) CrossRef
    3. Armon S., Efrati E., Kupferman R., Sharon E.: Geometry and mechanics in the opening of chiral seed pods. Science 333, 1726鈥?730 (2011) CrossRef
    4. Goriely A., Tabor M.: Spontaneous helix-hand reversal and tendril perversion in climbing plants. Phys. Rev. Lett. 80, 1564鈥?568 (1998) CrossRef
    5. Gerbode S.J., Puzey J.R., McCormick A.G., Mahadevan L.: How to cucumber tendril coils and overwinds. Science 337, 1087鈥?091 (2012) CrossRef
    6. Wang J.S., Wang G., Feng X.Q., Kitamura T., Kang Y.L., Yu S.W., Qin Q.H.: Hierarchical chirality transfer in the growth of Towel Gourd tendrils. Sci. Rep. 3, 3102 (2013)
    7. Sawa Y., Urayama K., Takigawa T., Gimnez-Pinto V., Mbang B.L., Ye F., Selinger J.V., Selinger R.L.B.: Shape and chirality transitions in off-axis twist nematic elastomer ribbons. Phys. Rev. E 88, 022502 (2013) CrossRef
    8. Abbott J.J., Peyer K.E., Lagomarsino M.C., Zhang L., Dong L.X., Kaliakatsos I.K., Nelson B.J.: How should microrobots swim?. Int. J. Robot. Res. 28, 1434鈥?447 (2009) CrossRef
    9. Ge Q., Qi H.J., Dunn M.L.: Active materials by four-dimension printing. Appl. Phys. Lett. 103, 131901 (2013) CrossRef
    10. Hamley I.W., Dehsorkhi A., Castelletto V., Furzeland S., Atkins D., Seitsonen J., Ruokolainen J.: Soft Matter 9, 9290鈥?293 (2013) CrossRef
    11. Hwang G., Dockendorf C., Bell D., Dong L., Hashimoto H., Poulikakos D., Nelson B.: 3-D InGaAs/GaAs helical nanobelts for optoelectronic devices. Int. J. Optomechatron. 2, 88鈥?03 (2008) CrossRef
    12. Chen Z., Majidi C., Srolovitz D.J., Haataja M.: Tunable helical ribbons. Appl. Phys. Lett. 98, 011906 (2011) CrossRef
    13. Chen, Z., Majidi, C., Srolovitz, D.J., Haataja, M.: Continuum elasticity theory approach for spontaneous bending and helicity of ribbons induced by mechanical anisotropy. arXiv:1209.3321
    14. Wang J.S., Feng X.Q., Wang G.F., Yu S.W.: Twisting of nanowires induced by anisotropic surface stresses. Appl. Phys. Lett. 92, 191901 (2008) CrossRef
    15. Chen Z., Guo Q., Majidi C., Chen W., Srolovitz D.J., Haataja M.: Nonlinear geometric effects in bistable morphing structures. Phys. Rev. Lett. 109, 114302 (2012) CrossRef
    16. Huang J., Liu J., Kroll B., Bertoldi K., Clarke D.R.: Spontaneous and deterministic three-dimensional curling of pre-strained elastomeric bi-strips. Soft Matter 8, 6291鈥?300 (2012) CrossRef
    17. Guo Q., Chen Z., Li W., Dai P., Ren K., Lin J., Taber L.A., Chen W.: Mechanics of tunable helices and geometric frustration in biomimetic seashells. EPL 105, 64005 (2014) CrossRef
    18. Zhang L., Deckhardt E., Weber A., Schonenberger C., Grutzmacher D.: Controllable fabrication of SiGe/Si and SiGe/Si/Cr helical nanobelts. Nanotechnology 16, 655 (2005) CrossRef
    19. Zhang L., Ruh E., Gr眉tzmacher D., Dong L., Bell D.J., Nelson B.J., Sch枚nenberger C.: Anomalous coiling of SiGe/Si and SiGe/Si/Cr helical nanobelts. Nano Lett. 6, 1311鈥?317 (2006) CrossRef
    20. Guo Q., Zheng H., Chen W., Chen Z.: Finite element simulations on mechanical self-assembly of biomimetic helical structure. J. Mech. Med. Biol. 13, 1340018 (2013) CrossRef
    21. Suo Z., Ma E.Y., Gleskova H., Wagner S.: Mechanics of rollable and foldable film-on-foil electronics. Appl. Phys. Lett. 74, 1177 (1999) CrossRef
    22. Majidi C., Chen Z., Srolovitz D.J., Haataja M.: Theory for the spontaneous bending of piezoelectric nanoribbons: mechanics, spontaneous polarization, and space charge coupling. J. Mech. Phys. Solids 58, 73鈥?5 (2010) CrossRef
    23. Savin T., Kurpios N.A., Shyer A.E., Florescu P., Liang H., Mahadevan L., Tabin C.J.: On the growth and form of the gut. Nature 476, 57鈥?2 (2011) CrossRef
    24. Wyczalkowski M.A., Chen Z., Filas B.A., Varner V.D., Taber L.A.: Computational models for mechanics of morphogenesis. Birth Defects Res. Part C Embryo Today 96, 132鈥?52 (2012) CrossRef
    25. Ji X.Y., Zhao M.Q., Wei F., Feng X.Q.: Spontaneous formation of double helical structure due to interfacial adhesion. Appl. Phys. Lett. 100, 263104 (2012) CrossRef
    26. Duan H.L., Weissmuller J., Wang Y.: Instabilities of core-shell heterostructured cylinders due to diffusions and epitaxy: spheroidization and blossom of nanowires. J. Mech. Phys. Solids 56, 1831鈥?851 (2008) CrossRef
    27. Li B., Feng X.Q., Li Y., Wang G.F.: Morphological instability of spherical soft particle induced by surface charges. Appl. Phys. Lett. 95, 021903 (2009) CrossRef
    28. Abraham Y., Tamburu C., Klein E., Dunlop J.W.C., Fratzl P., Raviv U., Elbaum R.: Tilted cellulose arrangement as a novel mechanism for hygroscopic coiling in the stork鈥檚 bill awn. J. R. Soc. Interface 9, 640鈥?47 (2012) CrossRef
    29. Armon S., Aharoni H., Moshe M., Sharon E.: Shape selection in chiral ribbons: from seed pods to supramolecular assemblies. Soft Matter 10, 2733鈥?740 (2014) CrossRef
    30. Li, W., Huang, G., Yan, H., Wang, J., Yu, Y., Hu, X., Wu, X., Mei, Y.: Fabrication and stimuli-responsive behavior of flexible micro-scrolls. Soft Matter 7103鈥?107 (2012)
    31. Sawa Y. et聽al.: Shape selection of twist-nematic-elastomer ribbons. Proc. Natl. Acad. Sci. USA 108, 6364鈥?368 (2011) CrossRef
    32. Selinger J.V., Spector M.S., Schnur J.M.: Theory of self-assembled tubules and helical ribbons. J. Phys. Chem. B 105, 7157鈥?169 (2001) CrossRef
    33. Oda R., Huc I., Schmutz M., Candau S.J., MacKintosh F.C.: Tuning bilayer twist using chiral counterions. Nature 399, 566鈥?69 (1999) CrossRef
    34. Teresi L., Varano V.: Modeling helicoids to spiral-ribbon transitions of twist-nematic elastomers. Soft Matter 9, 3081鈥?088 (2012) CrossRef
    35. Gibaud T. et聽al.: Reconfigurable self-assembly through chiral control of interfacial tension. Nature 481, 348鈥?51 (2012)
    36. Childers W.S., Anthony N.R., Mehta A.K., Berland K.M., Lynn D.G.: Phase networks of cross- / 尾 peptide assemblies. Langmuir 28, 6386鈥?395 (2012) CrossRef
    37. Bellesia G., Fedorov M.V., Timoshenko E.G.: Structural transitions in model / 尾-sheet tapes. J. Chem. Phys. 128, 195105 (2008) CrossRef
    38. Guo Q., Mehta A.K., Grover M.A., Chen W., Lynn D.G., Chen Z.: Shape selection and multi-stability in helical ribbons. Appl. Phys. Lett. 104, 211901 (2014) CrossRef
    39. Wang H., Upmanyu M.: Saddles, twists, and curls: shape transitions in freestanding nanoribbons. Nanoscale 4, 3620鈥?624 (2012) CrossRef
    40. Ghafouri R., Bruinsma R.: Helicoid to spiral ribbon transition. Phys. Rev. Lett. 94, 138101 (2005) CrossRef
    41. Hyer M.W.: The room-temperature shapes of four-layer unsymmetric cross-ply laminates. J. Compos. Mater. 16, 318鈥?40 (1982) CrossRef
    42. Kebadze E., Guest S.D., Pellegrino S.: Bistable prestressed shell structures. Int. J. Solids Struct. 41, 2801鈥?820 (2004) CrossRef
    43. Daynes S., Diaconu C.G., Potter K.D., Weaver P.M.: Bistable prestressed symmetric laminates. J. Compos. Mater. 44, 1119鈥?137 (2010) CrossRef
    44. Vidoli S., Maurini C.: Tristability of thin orthotropic shells with uniform initial curvature. Proc. R. Soc. A 464, 2949鈥?966 (2008) CrossRef
    45. Lachenal X., Weaver P.M., Daynes S.: Multi-stablecomposite twisting structure for morphing applications. Proc. R. Soc. A 468, 1230鈥?251 (2012) CrossRef
    46. Pirrera A., Lachenal X., Daynes S., Weaver P., Chenchiah I.V.: Multi-stable cylindrical lattices. J. Mech. Phys. Solids 61, 2087鈥?107 (2013) CrossRef
    47. Forterre Y., Skothelm J.M., Dumais J., Mahadevan L.: How the venus flytrap snaps. Nature 433, 421鈥?25 (2005) CrossRef
    48. Zheng H., Liu Y., Chen Z.: Fast motion of plants: from biomechanics to biomimetics. J. Postdr. Res. 1, 40鈥?0 (2013)
    49. Shahinpoor M.: Biomimetic robotic venus flytrap (Dionaea muscipula Ellis) made with ionic polymer metal composites. Bioinspir. Biomim. 6, 046004 (2011) CrossRef
    50. Arrieta A.F., Hagedorn P., Erturk A., Inman D.J.: A piezoelectric bistable plate for nonlinear broadband energy harvesting. Appl. Phys. Lett. 97, 104102 (2010) CrossRef
    51. Guo Q., Zheng H., Chen W., Chen Z.: Modeling bistable behaviors in morphing structures through finite element simulations. Bio-Med. Mater. Eng. 24, 557鈥?62 (2014)
    52. Chen Z.: Geometric nonlinearity and mechanical anisotropy in strained helical nanoribbons. Nanoscale 6, 9443鈥?447 (2014) CrossRef
    53. Liu J., Huang J., Su T., Bertoldi K., Clarke D.R.: Structural transition from helices to hemihelices. PLoS ONE 9(4), e93183 (2014) CrossRef
    54. Chopin H., Kudrolli A.: Helicoids, wrinkles, and loops in twisted ribbons. Phys. Rev. Lett. 111, 174302 (2013) CrossRef
    55. Kim T., Zhu L., Mueller L.J., Bardeen C.J.: Mechanism of photoinduced bending and twisting in crystalline microneedles and microribbons composed of 9-methylanthracene. J. Am. Chem. Soc. 136(18), 6617鈥?625 (2014) CrossRef
  • 刊物类别:Engineering
  • 刊物主题:Theoretical and Applied Mechanics
    Mechanics
    Complexity
    Fluids
    Thermodynamics
    Systems and Information Theory in Engineering
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0681
文摘
Helical structures are among the most universal building blocks in nature and engineering. In this work, I performed three-dimensional finite element simulations to study the transitions of shapes and multi-stability in the mechanically self-assembled helical structures driven by anisotropic misfit strains. The shape transition between a purely twisted ribbon, or a helicoid, and a general helical ribbon can be achieved by tuning a few relevant geometric and mechanical parameters, including the misfit strains, the geometric misorientation angle, the dimensions, and the mechanical properties of the composite layers. The results of our work show good agreement with the recent theoretical works and will serve as a powerful tool to facilitate on-demand designs of spontaneously curved structures at both macroscopic and microscopic scales, for a number of engineering applications including nanoelecromechanical systems, drug delivery, sensors, drug delivery, active materials, optoelectronics, and microrobotics.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.