Rates of convergence for extremes of geometric random variables and marked point processes
详细信息    查看全文
  • 作者:Alessandra Cipriani ; Anne Feidt
  • 关键词:Stein ; Chen method ; Maxima of geometric random variables ; Marshall ; Olkin geometric distribution ; Poisson approximation ; Marked point process of extremes ; 60F99 ; 62E20
  • 刊名:Extremes
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:19
  • 期:1
  • 页码:105-138
  • 全文大小:611 KB
  • 参考文献:Anderson, C. W., Coles, S. G., Hüsler, J.: Maxima of Poisson-like variables and related triangular arrays. Ann. Appl. Probab. 7, 953–971 (1997)MATH MathSciNet CrossRef
    Barbour, A. D.: Stein’s method, Encyclopedia of statistical sciences, Update Volume 1, 513–521 (1997)
    Barbour, A. D., Brown, T. C.: Stein’s method and point process approximation. Stochastic Process. Appl. 43(1), 9–31 (1992)MATH MathSciNet CrossRef
    Barbour, A. D., Hall, P., 1984: On the rate of Poisson convergence. Math. Proc. Cambridge Philos. Soc. 95(3), 473–480. doi:10.​1017/​S030500410006180​6
    Barbour, A. D., Holst, L., Janson, S.: Poisson approximation. The Clarendon Press Oxford University Press (1992)
    Barbour, A. D., Novak, S. Y., Xia, A.: Compound poisson approximation for the distribution of extremes. Adv. in Appl. Probab. 34(1), 223–240 (2002). doi: 10.​1239/​aap/​1019160958 MATH MathSciNet CrossRef
    Chen, L. H. Y.: An approximation theorem for sums of certain randomly selected indicators. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 33(1), 69–74 (1975)MATH MathSciNet CrossRef
    Feidt, A.: Stein’s Method for multivariate extremes, PhD thesis, Universität Zürich. http://​www.​zora.​uzh.​ch/​88050/​ (2013)
    Feidt, A., Genest, C., Nešlehová, J.: Asymptotics of joint maxima for discontinuous random variables. Extremes 13, 35–53 (2010)MATH MathSciNet CrossRef
    Fisher, R. A., Tippett, L. H. C.: Limiting forms of the frequency distributions of the largest or smallest member of a sample. Proc. Camb. Philos. Soc. 24, 180–190 (1928)MATH CrossRef
    Hawkes, A. G.: A bivariate exponential distribution with applications to reliability. J. R. Stat. Soc. Ser. B Methodol. 34(1), 129–131 (1972) [ http://​www.​jstor.​org/​stable/​ 2985057 ]MATH
    Kallenberg, O.: Random measures, 4th edn. Akademie-Verlag, Berlin (1986)
    Leadbetter, M. R., Lindgren, G., Rootzén, H.: Extremes and related properties of random sequences and processes. Springer, New York (1983)MATH CrossRef
    Marshall, A. W., Olkin, I.: A multivariate exponential distribution. J. Am. Stat. Assoc. 62(317), 30–44 (1967)MATH MathSciNet CrossRef
    Marshall, A. W., Olkin, I.: A family of bivariate distributions generated by the bivariate Bernoulli distribution. J. Amer. Statist. Assoc. 80, 332–338 (1985)MATH MathSciNet CrossRef
    Michel, R.: An improved error bound for the compound poisson approximation of a nearly homogeneous portfolio. Astin Bull. 17, 165–169 (1988)CrossRef
    Mitov, K., Nadarajah, S.: Asymptotics of maxima of discrete random variables. Extremes 5, 287–294 (2002)MathSciNet CrossRef
    Mitov, K., Nadarajah, S.: Limit distributions for the bivariate geometric maxima. Extremes 8, 357–370 (2005)MATH MathSciNet CrossRef
    Nelsen, R. B.: An introduction to copulas, Second Edition. Springer, New York (2006)
    Resnick, S. I.: Extreme values, regular variation, and point processes. Springer, New York (1987)MATH CrossRef
    Brown, T. C., Xia, A.: On metrics in point process approximation. Stochastics and Stochastic Reports 52(3-4), 247–263 (1995) [ http://​www.​tandfonline.​com/​doi/​ abs/​10.​1080/​1744250950883397​4 ]MATH MathSciNet
  • 作者单位:Alessandra Cipriani (1)
    Anne Feidt (2)

    1. Weierstrass Institute, Mohrenstrasse 39, 10117, Berlin, Germany
    2. Institut für Mathematik, Universität Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Statistics
    Statistics
    Quality Control, Reliability, Safety and Risk
    Civil Engineering
    Hydrogeology
    Environmental Management
    Statistics for Business, Economics, Mathematical Finance and Insurance
  • 出版者:Springer U.S.
  • ISSN:1572-915X
文摘
We use the Stein-Chen method to study the extremal behaviour of univariate and bivariate geometric laws. We obtain a rate for the convergence, to the Gumbel distribution, of the law of the maximum of i.i.d. geometric random variables, and show that convergence is faster when approximating by a discretised Gumbel. We similarly find a rate of convergence for the law of maxima of bivariate Marshall-Olkin geometric random pairs when approximating by a discrete limit law. We introduce marked point processes of exceedances (MPPEs), both with univariate and bivariate Marshall-Olkin geometric variables as marks and determine bounds on the error of the approximation, in an appropriate probability metric, of the law of the MPPE by that of a Poisson process with same mean measure. We then approximate by another Poisson process with an easier-to-use mean measure and estimate the error of this additional approximation. This work contains and extends results contained in the second author’s PhD thesis (Feidt 2013) under the supervision of Andrew D. Barbour. Keywords Stein-Chen method Maxima of geometric random variables Marshall-Olkin geometric distribution Poisson approximation Marked point process of extremes
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.