Homoclinic bifurcation in a quasiperiodically excited impact inverted pendulum
详细信息    查看全文
  • 作者:Junming Gao (1)
    Zhengdong Du (1)

    1. Department of Mathematics
    ; Sichuan University ; Chengdu ; 610064 ; Sichuan ; People鈥檚 Republic of China
  • 关键词:Impact oscillator ; Quasiperiodic excitation ; Melnikov method ; Homoclinic bifurcation ; Chaos ; 34C15 ; 34G25 ; 37C29
  • 刊名:Nonlinear Dynamics
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:79
  • 期:2
  • 页码:1061-1074
  • 全文大小:3,542 KB
  • 参考文献:1. Awrejcewicz, J., Holicke, M.M.: Smooth and Nonsmooth High Dimensional Chaos and the Melnikov-Type Methods. World Scientific, Singapore (2007)
    2. Bernardo, M.D., Budd, C.J., Champneys, A.R., Kowalczyk, P.: Piecewise-Smooth Dynamical Systems: Theory and Applications. Springer, London (2008)
    3. Fe膷kan, M.: Topological Degree Approach to Bifurcation Problems. Springer, Dordrecht (2008) CrossRef
    4. Fe膷kan, M.: Bifurcation and Chaos in Discontinuous and Continuous Systems. Higher Education Press, Beijing (2011) CrossRef
    5. Ibrahim, R.A.: Vibro-Impact Dynamics: Modelling. Mapping and Applications. Springer, Berlin (2009) CrossRef
    6. Kunze, M.: Non-Smooth Dynamical Systems. Springer, Berlin (2000) CrossRef
    7. Colombo, A., Bernardo, M.D., Hogan, S.J., Jeffrey, M.R.: Bifurcations of piecewise smooth flows: perspectives, methodologies and open problems. Phys. D 241, 1845鈥?860 (2012) CrossRef
    8. Makarenkov, O., Lamb, J.S.W.: Dynamics and bifurcations of nonsmooth systems: a survey. Phys. D 241, 1826鈥?844 (2012) CrossRef
    9. Simpson, D.J.W., Meiss, J.D.: Aspects of bifurcation theory for piecewise-smooth, continuous systems. Phys. D 241, 1861鈥?868 (2012) CrossRef
    10. Leine, R.I., van Campen, D.H., van de Vrande, B.L.: Bifurcations in nonlinear discontinuous systems. Nonlinear Dyn. 23, 105鈥?64 (2000) CrossRef
    11. Leine, R.I.: Bifurcations of equilibria in non-smooth continuous systems. Phys. D 223, 121鈥?37 (2006) CrossRef
    12. Casini, P., Vestroni, F.: Nonstandard bifurcations in oscillators with multiple discontinuity boundaries. Nonlinear Dyn. 35, 41鈥?9 (2004) CrossRef
    13. Battelli, F., Lazzari, C.: Exponential dichotomies, heteroclinic orbits, and Melnikov functions. J. Differ. Equ. 86, 342鈥?66 (1990) CrossRef
    14. Gruendler, J.: Homoclinic solutions for autonomous ordinary differential equations with nonautonomous perturbations. J. Differ. Equ. 122, 1鈥?6 (1995) CrossRef
    15. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations. Dynamical Systems and Bifurcations of Vector Fields. Springer, New York (1983)
    16. Melnikov, V.K.: On the stability of the center for time periodic perturbations. Trans. Mosc. Math. Soc. 12, 1鈥?7 (1963)
    17. Wiggins, S.: Global Bifurcations and Chaos-Analytical Methods. Springer, New York (1988) CrossRef
    18. Yagasaki, K.: Detection of homoclinic bifurcations in resonance zones of forced oscillators. Nonlinear Dyn. 28, 285鈥?07 (2002) CrossRef
    19. Siewe, M.S., Yamgou茅, S.B., Kakmeni, F.M.M., Tchawoua, C.: Chaos controlling self-sustained electromechanical seismograph system based on the Melnikov theory. Nonlinear Dyn. 62, 379鈥?89 (2010) CrossRef
    20. Battelli, F., Fe膷kan, M.: Homoclinic trajectories in discontinuous systems. J. Dyn. Differ. Equ. 20, 337鈥?76 (2008) CrossRef
    21. Battelli, F., Fe膷kan, M.: Chaos in forced impact systems. Discrete Contin. Dyn. Syst. Ser. S 6, 861鈥?90 (2013) CrossRef
    22. Carmona, V., Fernandez-Garcia, S., Freire, E., Torres, F.: Melnikov theory for a class of planar hybrid systems. Phys. D 248, 44鈥?4 (2013) CrossRef
    23. Du, Z., Zhang, W.: Melnikov method for homoclinic bifurcation in nonlinear impact oscillators. Comput. Math. Appl. 50, 445鈥?58 (2005) CrossRef
    24. Granados, A., Hogan, S.J., Seara, T.M.: The Melnikov method and subharmonic orbits in a piecewise-smooth system. SIAM J. Appl. Dyn. Syst. 11, 801鈥?30 (2012) CrossRef
    25. Kuku膷ka, P.: Melnikov method for discontinuous planar systems. Nonlinear Anal. Ser. A 66, 2698鈥?719 (2007) CrossRef
    26. Awrejcewicz, J., Fe膷kan, M., Olejnik, P.: Bifurcations of planar sliding homoclinics. Math. Prob. Eng. 2006, 1鈥?3 (2006)
    27. Battelli, F., Fe膷kan, M.: Bifurcation and chaos near sliding homoclinics. J. Differ. Equ. 248, 2227鈥?262 (2010) CrossRef
    28. Battelli, F., Fe膷kan, M.: An example of chaotic behaviour in presence of a sliding homoclinic orbit. Ann. Mat. Pura Appl. 189, 615鈥?42 (2010) CrossRef
    29. Battelli, F., Fe膷kan, M.: Nonsmooth homoclinic orbits, Melnikov functions and chaos in discontinuous systems. Phys. D 241, 1962鈥?975 (2012) CrossRef
    30. Du, Z., Li, Y., Shen, J., Zhang, W.: Impact oscillators with homoclinic orbit tangent to the wall. Phys. D 245, 19鈥?3 (2013) CrossRef
    31. Wiggins, S.: Chaos in the quasiperiodically forced Duffing oscillator. Phys. Lett. A 124, 138鈥?42 (1987) CrossRef
    32. Ide, K., Wiggins, S.: The bifurcation to homoclinic tori in the quasiperiodically forced Duffing oscillator. Phys. D 34, 169鈥?82 (1989) CrossRef
    33. Moon, F.C., Holmes, W.T.: Double Poincar茅 sections of a quasi-periodically forced, chaotic attractor. Phys. Lett. A 111, 157鈥?60 (1985) CrossRef
    34. Vavriv, D.M., Ryabov, V.B., Sharapov, S.A., Ito, H.M.: Chaotic states of weakly and strongly nonlinear oscillators with quasiperiodic excitation. Phys. Rev. E 53, 103鈥?13 (1996) CrossRef
    35. Yagasaki, K.: Bifurcations and chaos in a quasi-periodically forced beam: theory, simulation and experiment. J. Sound Vib. 183, 1鈥?1 (1995) CrossRef
    36. Avramov, K.V., Awrejcewicz, J.: Frictional oscillations under the action of almost periodic excitation. Meccanica 41, 119鈥?42 (2006) CrossRef
    37. Chow, S.-N., Shaw, S.W.: Bifurcations of subharmonics. J. Differ. Equ. 65, 304鈥?20 (1986)
    38. Shaw, S.W., Rand, R.H.: The transition to chaos in a simple mechanical system. Int. J. Non-linear Mech. 24, 41鈥?6 (1989)
    39. Shaw, S.W., Haddow, A.G., Hsieh, S.-R.: Properties of cross-well chaos in an impacting system. Philos. Trans. R. Soc. Lond. A 347, 391鈥?10 (1994) CrossRef
    40. Lenci, S.: On the suppressions of chaos by means of bounded excitations in an inverted pendulum. SIAM J. Appl. Math. 58, 1116鈥?127 (1998)
    41. Lenci, S., Rega, G.: A procedure for reducing the chaotic response region in an impact mechanical system. Nonlinear Dyn. 15, 391鈥?09 (1998) CrossRef
    42. Lenci, S., Rega, G.: Periodic solutions and bifurcations in an impact inverted pendulum under impulsive excitation. Chaos Solitons Fractals 11, 2453鈥?472 (2000) CrossRef
    43. Lenci, S., Rega, G.: Regular nonlinear dynamics and bifurcations of an impacting system under general periodic excitation. Nonlinear Dyn. 34, 249鈥?68 (2003) CrossRef
    44. Demeio, L., Lenci, S.: Asymptotic analysis of chattering oscillations for an impacting inverted pendulum. Q. J. Mech. Appl. Math. 59, 419鈥?34 (2006) CrossRef
    45. Du, Z., Li, Y., Zhang, W.: Type I periodic motions for nonlinear impact oscillators. Nonlinear Anal. Ser. A 67, 1344鈥?358 (2007) CrossRef
    46. Li, Y., Du, Z., Zhang, W.: Asymmetric type II periodic motions for nonlinear impact oscillators. Nonlinear Anal. Ser. A 68, 2681鈥?696 (2008) CrossRef
    47. Shen, J., Du, Z.: Double impact periodic orbits for an inverted pendulum. Int. J. Non-linear Mech. 46, 1177鈥?190 (2011) CrossRef
    48. Piiroinen, P.T., Kuznetsov, Y.A.: An event-driven method to simulate Filippov systems with accurate computing of sliding motions. ACM Trans. Math. Softw. 34(3), Article no. 13 (2008).
    49. Mancho, A.M., Small, D., Wiggins, S., Ide, K.: Computation of stable and unstable manifolds of hyperbolic trajectories in two-dimensional, aperiodically time-dependent vector fields. Phys. D 182, 188鈥?22 (2003) CrossRef
    50. Jin, L., Lu, Q.-S., Twizell, E.H.: A method for calculating the spectrum of Lyapunov exponents by local maps in non-smooth impact-vibrating systems. J. Sound Vib. 298, 1019鈥?033 (2006) CrossRef
    51. Yue, Y., Xie, J., Gao, X.: Determining Lyapunov spectrum and Lyapunov dimension based on the Poincar茅 map in a vibro-impact system. Nonlinear Dyn. 69, 743鈥?53 (2012) CrossRef
    52. Parthasarathy, S.: Homoclinic bifurcation sets of the parametrically driven Duffing oscillator. Phys. Rev. A 46, 2147鈥?150 (1992) CrossRef
  • 刊物类别:Engineering
  • 刊物主题:Vibration, Dynamical Systems and Control
    Mechanics
    Mechanical Engineering
    Automotive and Aerospace Engineering and Traffic
  • 出版者:Springer Netherlands
  • ISSN:1573-269X
文摘
Homoclinic bifurcation for a nonlinear inverted pendulum impacting between two rigid walls under external quasiperiodic excitation is analyzed. The results for the homoclinic bifurcation of quasiperiodically excited smooth systems obtained by Ide and Wiggins are extended to the non-smooth ones. We present a method of Melnikov type to derive sufficient conditions under which the perturbed stable and unstable manifolds intersect transversally. Such a transversal Intersection implies the appearance of Smale horseshoe-type chaotic dynamics that is similar to that in the periodically forced smooth systems. As an application, by using a combination of analytical and numerical methods, a quasiperiodically excited impact oscillator of Duffing type with two frequencies is studied in detail.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.