Iterative methods for solving variational inequalities in Euclidean space
详细信息    查看全文
  • 作者:Aviv Gibali ; Simeon Reich ; Rafa? Zalas
  • 关键词:47H05 ; 47H09 ; 47H10 ; 47J20 ; 47J25 ; 65K15 ; Almost cyclic control ; common fixed point ; intermittent control ; iterative method ; metric projection ; nonexpansive operator ; quasinonexpansive operator ; subgradient projection ; variational inequality
  • 刊名:Journal of Fixed Point Theory and Applications
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:17
  • 期:4
  • 页码:775-811
  • 全文大小:1,198 KB
  • 参考文献:1.K. Aoyama, F. Kohsaka, Viscosity approximation process for a sequence of quasinonexpansive mappings. Fixed Point Theory Appl. 2014 (2014), doi:10.-186/-687-1812-2014-17 , 11 pages
    2.Bauschke H.H.: The approximation of fixed points of composition of nonexpansive mappings in Hilbert space. J. Math. Anal. Appl. 202, 150-59 (1996)MATH MathSciNet CrossRef
    3.Bauschke H.H., Borwein J.: On the convergence of von Neumann’s alternating projection algorithm for two sets. Set-Valued Anal. 1, 185-12 (1993)MATH MathSciNet CrossRef
    4.Bauschke H.H., Borwein J.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38, 367-26 (1996)MATH MathSciNet CrossRef
    5.Bauschke H.H., Combettes P.L.: A weak-to-strong convergence principle for Fejér-monotone methods in Hilbert spaces. Math. Oper. Res. 26, 248-64 (2001)MATH MathSciNet CrossRef
    6.Bauschke H.H., Combettes P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2011)MATH CrossRef
    7.Bauschke H.H., Matou?ková E., Reich S.: Projection and proximal point methods: Convergence results and counterexamples. Nonlinear Anal. 56, 715-38 (2004)MATH MathSciNet CrossRef
    8.Bauschke H.H., Wang C., Wang X., Xu J.: On subgradient projectors. SIAM J. Optim. 25, 1064-082 (2015)MathSciNet CrossRef
    9.Bruck R.E.: Random products of contractions in metric and Banach spaces. J. Math. Anal. Appl. 8, 319-32 (1982)MathSciNet CrossRef
    10.A. Cegielski, Generalized relaxations of nonexpansive operators and convex feasibility problems. In: Nonlinear Analysis and Optimization. I. Nonlinear Analysis, Contemp. Math. 513, Amer. Math. Soc., Providence, RI, 2010, 111-23
    11.A. Cegielski, Iterative Methods for Fixed Point Problems in Hilbert Spaces. Springer, Heidelberg, 2012
    12.Cegielski A.: Extrapolated simultaneous subgradient projection method for variational inequality over the intersection of convex subsets. J. Nonlinear Convex Anal. 15, 211-18 (2014)MATH MathSciNet
    13.A. Cegielski, Application of quasi-nonexpansive operators to an iterative method for variational inequality. In preparation
    14.A. Cegielski and Y. Censor, Opial-type theorems and the common fixed point problem. In: Fixed-Point Algorithms for Inverse Problems in Science and Engineering, Springer Optim. Appl. 49, Springer, New York, 2011, 155-83
    15.Cegielski A., Gibali A., Reich S., Zalas R.: An algorithm for solving the variational inequality problem over the fixed point set of a quasi-nonexpansive operator in Euclidean space. Numer. Funct. Anal. Optim. 34, 1067-096 (2013)MATH MathSciNet CrossRef
    16.Cegielski A., Zalas R.: Methods for variational inequality problem over the intersection of fixed point sets of quasi-nonexpansive operators. Numer. Funct. Anal. Optim. 34, 255-83 (2013)MATH MathSciNet CrossRef
    17.Cegielski A., Zalas R.: Properties of a class of approximately shrinking operators and their applications. Fixed Point Theory 15, 399-26 (2014)MATH MathSciNet
    18.Y. Censor and A. Gibali, Projections onto super-half-spaces for monotone variational inequality problems in finite-dimensional space. J. Nonlinear Convex Anal. 9, 461-5 (2008)
    19.Censor Y., Segal A.: On the string averaging method for sparse common fixed point problems. Int. Trans. Oper. Res. 16, 481-94 (2009)MATH MathSciNet CrossRef
    20.Y. Censor and A. Segal, Sparse string-averaging and split common fixed points. In: Nonlinear Analysis and Optimization. I. Nonlinear Analysis, Contemp. Math. 513, Amer. Math. Soc., Providence, RI, 2010, 125-42
    21.P. L. Combettes, Quasi-Fejérian analysis of some optimization algorithms. In: Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications (Haifa, 2000), Stud. Comput. Math. 8, North-Holland, Amsterdam, 2001, 115-52
    22.Crombez G.: A hierarchical presentation of operators with fixed points on Hilbert spaces. Numer. Funct. Anal. Optim. 27, 259-77 (2006)MATH MathSciNet CrossRef
    23.Deutsch F.: Best Approximation in Inner Product Spaces. Springer, New York (2001)MATH CrossRef
    24.Deutsch F., Yamada I.: Minimizing certain convex functions over the intersection of the fixed point sets of nonexpansive mappings. Numer. Funct. Anal. Optim. 19, 33-6 (1998)MATH MathSciNet CrossRef
    25.Dotson W.G. Jr.: On the Mann iterative process. Trans. Amer. Math. Soc. 149, 65-3 (1970)MATH MathSciNet CrossRef
    26.F. Facchinei and J.-S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems. Volumes I and II, Springer, New York, 2003
    27.Fletcher R.: Practical Methods of Optimization. John Wiley, Chichester (1987)MATH
    28.Fukushima M.: A relaxed projection method for variational inequalities. Math. Program. 35, 58-0 (1986)MATH MathSciNet CrossRef
    29.Genel A., Lindenstrauss J.: An example concerning fixed points. Israel J. Math. 22, 81-6 (1975)MATH MathSciNet CrossRef
    30.Goldstein A.A.: Convex programming in Hilbert space. Bull. Amer. Ma
  • 作者单位:Aviv Gibali (1)
    Simeon Reich (2)
    Rafa? Zalas (2)

    1. Department of Mathematics, ORT Braude College, 21982, Karmiel, Israel
    2. Department of Mathematics, The Technion - Israel Institute of Technology, 32000, Haifa, Israel
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Mathematics
    Analysis
    Mathematical Methods in Physics
  • 出版者:Birkh盲user Basel
  • ISSN:1661-7746
文摘
In this paper, we investigate the convergence properties of an iterative method for solving variational inequalities in Euclidean space. We show that under certain assumptions the method can be applied to variational inequalities defined over the common fixed point set of a given infinite family of cutter operators. The main step of our method consists in the computation of the metric projection onto a certain superhalf- space, which is constructed using the input data defining the problem. Moreover, in the case where the common fixed point set is a finite intersection of the fixed point sets of cutters for which Opial’s closedness principle holds, we show that the iterative method can be easily combined with either sequential, composition or convex combination type methods. We also discuss ways of applying our method to more general classes of operators such as quasi-nonexpansive and demi-contractive ones. Keywords Almost cyclic control common fixed point intermittent control iterative method metric projection nonexpansive operator quasinonexpansive operator subgradient projection variational inequality
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.