Isothermal and non-isothermal crystallization kinetics of polyamide 12 used in laser sintering
详细信息    查看全文
  • 作者:Fabian Neugebauer ; Vasily Ploshikhin…
  • 关键词:Crystallization kinetics ; Polyamide 12 ; Laser sintering ; DSC
  • 刊名:Journal of Thermal Analysis and Calorimetry
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:124
  • 期:2
  • 页码:925-933
  • 全文大小:785 KB
  • 参考文献:1.Horn TJ, Harrysson OLA. Overview of current additive manufacturing technologies and selected applications. Sci Prog. 2012;95(3):255–82.CrossRef
    2.Petrovic V, Vicente-Haro-Gonzalez J, Jordá-Ferrando O, Delgado-Gordillo J, Ramón-Blasco-Puchades J, Portolés-Griñan L. Additive layered manufacturing: sectors of industrial application shown through case studies. Int J Prod Res. 2010;49(4):1061–79.CrossRef
    3.Gibson I, Rosen DW, Stucker B. Additive manufacturing technologies rapid prototyping to direct digital manufacturing. New York: Springer; 2010.
    4.Pukánszky B, Mudra I, Staniek P. Relation of crystalline structure and mechanical properties of nucleated polypropylene. J Vinyl Add Tech. 1997;3(1):53–7.CrossRef
    5.Nelson J, Rennie R, Abram T, Adiele A, Wood M, Tripp M, et al. Effect of process conditions on temperature distribution in the powder bed during laser sintering of polyamide-12. J Therm Eng. 2015;1(3):159–65.CrossRef
    6.Josupeit S, Schmid HJ. Three-dimensional in-process temperature measurement of laser-sintered part cakes. In: Bourell D, editor. Proceedings of the solid freeform fabrication symposium. Texas: Austin; 2014. p. 49–58.
    7.Shen J, Steinberger J, Göpfert J, Gerner J, Daiber F, Manetsberger S et al. Inhomogeneous shrinkage of polymer materials in selective laser sintering. In: Bourell, DL et al., editors. Solid freeform fabrication symposium; 2000; Texas, USA 2000.
    8.Steinberger J. Optimierung des Selektiven-Laser-Sinterns zur Herstellung von Feingußteilen für die Luftfahrtindustrie. Düsseldorf: VDI-Verlag; 2001.
    9.Ambrosy J, Witt G, Neugebauer F. Untersuchung von bauteilverzug beim laser-sintern von polyamid 12. In: RapitTech, editors. RapidTech 2015; 2015 10.–11. Juni 2015; Erfurt2015.
    10.Diller TT, Yuan M, Bourell DL, Beaman JJ. Thermal model and measurements of polymer laser sintering. Rapid Prototyp J. 2015;21(1):2–13.CrossRef
    11.Yuan M, Bourell D. Efforts to reduce part bed thermal gradients during laser sintering processing. In: Proceedings of the 23rd international solid freeform fabrication symposium (SFF 2012), The University of Texas at Austin; 2012.
    12.Josupeit S, Schmid HJ. Temperature history within laser sintered part cakes and its influence on process quality. Proceedings of the 26rd international solid freeform fabrication symposium (SFF 2012), The University of Texas at Austin; 2015.
    13.Höhne G, Hemminger W, Flammersheim HJ. Differential scanning calorimetry. Springer Science & Business Media; 2003.
    14.Schmid M, Amado A, Wegener K. Materials perspective of polymers for additive manufacturing with selective laser sintering. J Mater Res. 2014;29(17):1824–32.CrossRef
    15.Neugebauer F. FEM simulation of temperature and crystallization in laser sintering of polyamide 12. In: Ploshikhin V, Neugebauer F, editors. Materials Science and Technology of Additive Manufacturing; Bremen: DVS Media GmbH, Düsseldorf; 2014. p. 17–23.
    16.Amado A, Schmid M, Levy G, Wegener K. Characterization and modeling of non-isothermal crystallization of Polyamide 12 and co-Polypropylene during the SLS process. 5th International Polymers & Moulds Innovations Conference, Ghent; 2012.
    17.Avrami M. Kinetics of phase change. I General theory. J Chem Phys. 1939;7(12):1103–12.CrossRef
    18.Xu J-T, Fairclough JPA, Mai S-M, Ryan AJ, Chaibundit C. Isothermal crystallization kinetics and melting behavior of poly(oxyethylene)-b-poly(oxybutylene)/Poly(oxybutylene) Blends. Macromolecules. 2002;35(18):6937–45.CrossRef
    19.Smith GW. A method for determination of Avrami parameters directly from isothermal calorimetry data. Thermochim Acta. 1997;291(1–2):59–64.CrossRef
    20.Mao B, Cebe P. Avrami analysis of melt crystallization behavior of trogamid. J Therm Anal Calorim. 2013;113(2):545–50.CrossRef
    21.Eder M, Włochowicz A. Crystallization kinetics of polyamide 6 containing pigments. J Therm Anal. 1989;35(3):751–63.CrossRef
    22.Henricks J, Boyum M, Zheng W. Crystallization kinetics and structure evolution of a polylactic acid during melt and cold crystallization. J Therm Anal Calorim. 2015;120(3):1765–74.CrossRef
    23.Fukuyama Y, Kawai T, Kuroda SI, Toyonaga M, Taniike T, Terano M. The effect of the addition of polypropylene grafted SiO2 nanoparticle on the crystallization behavior of isotactic polypropylene. J Therm Anal Calorim. 2013;113(3):1511–9.CrossRef
    24.Ozawa T. Kinetics of non-isothermal crystallization. Polymer. 1971;12(3):150–8.CrossRef
    25.Kozlowski W. Kinetics of crystallization of polyamide 6 from the glassy state. J Polym Sci Polym Symp. 1972;38(1):47–59.CrossRef
    26.Eder M, Wlochowicz A. Kinetics of non-isothermal crystallization of polyethylene and polypropylene. Polymer. 1983;24(12):1593–5.CrossRef
    27.Monasse B, Haudin JM. Thermal dependence of nucleation and growth rate in polypropylene by non isothermal calorimetry. Colloid Polym Sci. 1986;264(2):117–22.CrossRef
    28.Zhou H, Ying J, Xie X, Liu F, Li D. Nonisothermal crystallization behavior and kinetics of isotactic polypropylene/ethylene–octene blends. Part II: modeling of crystallization kinetics. Polym Test. 2010;29(7):915–23.CrossRef
    29.McFerran NLA, Armstrong CG, McNally T. Nonisothermal and isothermal crystallization kinetics of nylon-12. J Appl Polym Sci. 2008;110(2):1043–58.CrossRef
    30.Liu T, Mo Z, Wang S, Zhang H. Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone). Polym Eng Sci. 1997;37(3):568–75.CrossRef
    31.Liu S, Yu Y, Cui Y, Zhang H, Mo Z. Isothermal and nonisothermal crystallization kinetics of nylon-11. J Appl Polym Sci. 1998;70(12):2371–80.CrossRef
    32.Mubarak Y, Harkin-Jones EMA, Martin PJ, Ahmad M. Modeling of non-isothermal crystallization kinetics of isotactic polypropylene. Polymer. 2001;42(7):3171–82.CrossRef
    33.Nakamura K, Watanabe T, Katayama K, Amano T. Some aspects of nonisothermal crystallization of polymers. I. Relationship between crystallization temperature, crystallinity, and cooling conditions. J Appl Polym Sci. 1972;16(5):1077–91.CrossRef
    34.Nakamura K, Katayama K, Amano T. Some aspects of nonisothermal crystallization of polymers. II. Consideration of the isokinetic condition. J Appl Polym Sci. 1973;17(4):1031–41.CrossRef
    35.Hoffman J, Davis GT, Lauritzen J Jr. The rate of crystallization of linear polymers with chain folding. In: Hannay NB, editor. Treatise on solid state chemistry. New York: Springer; 1976. p. 497–614.CrossRef
    36.Hoffman J, Weeks J. Melting process and the equilibrium melting temperature of polychlorotrifluoroethylene. J Res Nbs A Phys Ch. 1961;66A(1):13–28.CrossRef
    37.Patel RM, Spruiell JE. Crystallization kinetics during polymer processing: analysis of available approaches for process modeling. Polymer Eng Sci. 1991;31(10):730–8.CrossRef
    38.Kamal MR, Chu E. Isothermal and nonisothermal crystallization of polyethylene. Polym Eng Sci. 1983;23(1):27–31.CrossRef
    39.Chan T, Isayev A. Quiescent polymer crystallization: modelling and measurements. Polym Eng Sci. 1994;34(6):461–71.CrossRef
    40.Ruan C, Liang K, Guo L, Li W. Computer modeling and simulation for 3D crystallization of polymers. I. Isothermal Case. Polym-Plast Technol. 2012;51(8):810–5.CrossRef
    41.Ruan C, Guo L, Liang K, Li W. Computer modeling and simulation for 3D crystallization of polymers. II. Non-Isothermal Case. Polym-Plast Technol. 2012;51(8):816–22.CrossRef
    42.Shen C, Zhou Y, Chen J, Li Q. Numerical simulation of crystallization morphological evolution under nonisothermal conditions. Polym-Plast Technol. 2008;47(7):708–15.CrossRef
    43.Wang L, Li Q, Shen C. The numerical simulation of the crystallization morphology evolution of semi-crystalline polymers in injection molding. Polym-Plast Technol. 2010;49(10):1036–48.CrossRef
    44.Le Goff R, Poutot G, Delaunay D, Fulchiron R, Koscher E. Study and modeling of heat transfer during the solidification of semi-crystalline polymers. Int J Heat Mass Transfer. 2005;48(25–26):5417–30.CrossRef
    45.Rietzel D, Drexler M, Kühnlein F, Drummer D, editors. Influence of temperature fields on the processing of polymer powders by means of laser and mask sintering technology. Proceedings of the Solid Freeform Fabrication Symposium; 2011.
    46.Drummer D, Rietzel D, Kühnlein F. Development of a characterization approach for the sintering behavior of new thermoplastics for selective laser sintering. Phys Procedia. 2010;5, Part B:533–42.
    47.Foubert I, Vanrolleghem PA, Dewettinck K. A differential scanning calorimetry method to determine the isothermal crystallization kinetics of cocoa butter. Thermochim Acta. 2003;400(1–2):131–42.CrossRef
    48.Lorenzo AT, Arnal ML, Albuerne J, Müller AJ. DSC isothermal polymer crystallization kinetics measurements and the use of the Avrami equation to fit the data: guidelines to avoid common problems. Polym Test. 2007;26(2):222–31.CrossRef
    49.Rietzel D. Werkstoffverhalten und Prozessanalyse beim Laser-Sintern von Thermoplasten [Dissertation]. Universität Erlangen-Nürnberg Lehrst. f. Kunststofftechn, Erlangen-Nürnberg. 2011.
  • 作者单位:Fabian Neugebauer (1)
    Vasily Ploshikhin (1)
    Janick Ambrosy (2)
    Gerd Witt (2)

    1. Airbus Endowed Chair for Integrative Simulation and Engineering of Materials and Processes, University of Bremen, Bremen, Germany
    2. Institute of Product Engineering, Manufacturing Technology, University of Duisburg-Essen, Duisburg, Germany
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Sciences
    Polymer Sciences
    Physical Chemistry
    Inorganic Chemistry
    Measurement Science and Instrumentation
  • 出版者:Akad茅miai Kiad贸, co-published with Springer Science+Business Media B.V., Formerly Kluwer Academic
  • ISSN:1572-8943
文摘
Laser sintering of polymers is a steadily improving additive manufacturing method. Mainly used materials are semicrystalline thermoplastics, and as part of those, polyamide 12 has established most. When semicrystalline polymers cool down from the melt, they exhibit volume shrinkage due to crystallization. This crystallization occurs non-uniformly within the produced parts and thus is responsible for part warpage. Aim of this study was to investigate the crystallization kinetics of an, in laser sintering widely used, polyamide 12-based polymer available by supplier EOS with appellation PA2200. For that purpose, several isothermal and non-isothermal DSC measurements were taken. The isothermal measurements were analyzed according to the theory of Avrami. Furthermore, the parameters of the crystallization model by Nakamura were calibrated, and both conditions were simulated. It was found that the isothermal data are very well describable by the theory of Avrami as well as the model by Nakamura can be used to model both conditions.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.