Oncogene-Induced Senescence in Pituitary Adenomas—an Immunohistochemical Study
详细信息    查看全文
  • 作者:Emilija Manojlovic-Gacic ; Milica Skender-Gazibara ; Vera Popovic…
  • 关键词:Pituitary adenoma ; Oncogene ; induced senescence ; GH adenomas granulation pattern ; Immunohistochemistry
  • 刊名:Endocrine Pathology
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:27
  • 期:1
  • 页码:1-11
  • 全文大小:1,537 KB
  • 参考文献:1.Xu Y, Li N, Xiang R, Sun P (2014) Emerging roles of the p38 MAPK and PI3K/AKT/mTOR pathways in oncogene-induced senescence. Trends Biochem Sci 39:268–276. doi:10.​1016/​j.​tibs.​2014.​04.​004 PubMedCentral CrossRef PubMed
    2.Collado M, Serrano M (2006) The power and the promise of oncogene-induced senescence markers. Nat Rev Cancer 6:472–476. doi:10.​1038/​nrc1884 CrossRef PubMed
    3.Alexandraki KI, Munayem Khan M, Chahal HS, Dalantaeva NS, Trivellin G, Berney DM, Caron P, Popovic V, Pfeifer M, Jordan S, Korbonits M, Grossman AB (2012) Oncogene-induced senescence in pituitary adenomas and carcinomas. Hormones (Athens, Greece) 11:297–307
    4.Zhang H (2007) Molecular signaling and genetic pathways of senescence: Its role in tumorigenesis and aging. Journal of Cellular Physiology 210:567–574. doi:10.​1002/​jcp.​20919 CrossRef PubMed
    5.Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88:593–602CrossRef PubMed
    6.Quereda V, Martinalbo J, Dubus P, Carnero A, Malumbres M (2007) Genetic cooperation between p21Cip1 and INK4 inhibitors in cellular senescence and tumor suppression. Oncogene 26:7665–7674. doi:10.​1038/​sj.​onc.​1210578 CrossRef PubMed
    7.Bringold F, Serrano M (2000) Tumor suppressors and oncogenes in cellular senescence. Exp Gerontol 35:317–329CrossRef PubMed
    8.Campisi J (2005) Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120:513–522. doi:10.​1016/​j.​cell.​2005.​02.​003 CrossRef PubMed
    9.Campisi J (2013) Aging, cellular senescence, and cancer. Annu Rev Physiol 75:685–705. doi:10.​1146/​annurev-physiol-030212-183653 PubMedCentral CrossRef PubMed
    10.Vousden KH, Lane DP (2007) p53 in health and disease. Nature Reviews Molecular Cell Biology 8:275–283. doi:10.​1038/​nrm2147 CrossRef PubMed
    11.Rodier F, Campisi J, Bhaumik D (2007) Two faces of p53: aging and tumor suppression. Nucleic Acids Res 35:7475–7484. doi:10.​1093/​nar/​gkm744 PubMedCentral CrossRef PubMed
    12.Cazzalini O, Scovassi AI, Savio M, Stivala LA, Prosperi E (2010) Multiple roles of the cell cycle inhibitor p21(CDKN1A) in the DNA damage response. Mutat Res 704:12–20. doi:10.​1016/​j.​mrrev.​2010.​01.​009 CrossRef PubMed
    13.Rayess H, Wang MB, Srivatsan ES (2012) Cellular senescence and tumor suppressor gene p16. International journal of cancer Journal international du cancer 130 (8):1715–1725. doi:10.​1002/​ijc.​27316 PubMedCentral CrossRef PubMed
    14.Bernardes de Jesus B, Blasco MA (2012) Assessing cell and organ senescence biomarkers. Circ Res 111:97–109. doi:10.​1161/​circresaha.​111.​247866 CrossRef PubMed
    15.Lee BY, Han JA, Im JS, Morrone A, Johung K, Goodwin EC, Kleijer WJ, DiMaio D, Hwang ES (2006) Senescence-associated beta-galactosidase is lysosomal beta-galactosidase. Aging Cell 5:187–195. doi:10.​1111/​j.​1474-9726.​2006.​00199.​x CrossRef PubMed
    16.Kurz DJ, Decary S, Hong Y, Erusalimsky JD (2000) Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J Cell Sci 113:3613–3622PubMed
    17.Yang NC, Hu ML (2005) The limitations and validities of senescence associated-beta-galactosidase activity as an aging marker for human foreskin fibroblast Hs68 cells. Exp Gerontol 40:813–819. doi:10.​1016/​j.​exger.​2005.​07.​011 CrossRef PubMed
    18.Gary RK, Kindell SM (2005) Quantitative assay of senescence-associated beta-galactosidase activity in mammalian cell extracts. Anal Biochem 343:329–334. doi:10.​1016/​j.​ab.​2005.​06.​003 CrossRef PubMed
    19.Kuilman T, Michaloglou C, Mooi WJ, Peeper DS (2010) The essence of senescence. Genes Dev 24:2463–2479. doi:10.​1101/​gad.​1971610 PubMedCentral CrossRef PubMed
    20.Debacq-Chainiaux F, Erusalimsky JD, Campisi J, Toussaint O (2009) Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc 4:1798–1806. doi:10.​1038/​nprot.​2009.​191 CrossRef PubMed
    21.Ezzat S, Asa SL, Couldwell WT, Barr CE, Dodge WE, Vance ML, McCutcheon IE (2004) The prevalence of pituitary adenomas: a systematic review. Cancer 101:613–619. doi:10.​1002/​cncr.​20412 CrossRef PubMed
    22.Pernicone PJ, Scheithauer BW, Sebo TJ, Kovacs KT, Horvath E, Young WF, Jr., Lloyd RV, Davis DH, Guthrie BL, Schoene WC (1997) Pituitary carcinoma: a clinicopathologic study of 15 cases. Cancer 79:804–812CrossRef PubMed
    23.Chesnokova V, Zonis S, Rubinek T, Yu R, Ben-Shlomo A, Kovacs K, Wawrowsky K, Melmed S (2007) Senescence mediates pituitary hypoplasia and restrains pituitary tumor growth. Cancer Research 67:10564–10572. doi:10.​1158/​0008-5472.​can-07-0974 PubMedCentral CrossRef PubMed
    24.Chesnokova V, Melmed S (2010) Pituitary senescence: the evolving role of Pttg. Mol Cell Endocrinol 326:55–59. doi:10.​1016/​j.​mce.​2010.​02.​012 PubMedCentral CrossRef PubMed
    25.Sabatino ME, Petiti JP, Sosa Ldel V, Perez PA, Gutierrez S, Leimgruber C, Latini A, Torres AI, De Paul AL (2015) Evidence of cellular senescence during the development of estrogen-induced pituitary tumors. Endocr Relat Cancer 22:299–317. doi:10.​1530/​erc-14-0333 CrossRef PubMed
    26.Chesnokova V, Zhou C, Ben-Shlomo A, Zonis S, Tani Y, Ren SG, Melmed S (2013) Growth hormone is a cellular senescence target in pituitary and nonpituitary cells. Proceedings of the National Academy of Sciences of the United States of America 110:E3331-3339. doi:10.​1073/​pnas.​1310589110 PubMedCentral CrossRef PubMed
    27.Chesnokova V, Zonis S, Kovacs K, Ben-Shlomo A, Wawrowsky K, Bannykh S, Melmed S (2008) p21(Cip1) restrains pituitary tumor growth. Proceedings of the National Academy of Sciences of the United States of America 105:17498–17503. doi:10.​1073/​pnas.​0804810105 PubMedCentral CrossRef PubMed
    28.DeLellis RA (2004) Pathology and genetics of tumours of endocrine organs. World Health Organization classification of tumours, vol 8. IARC Press, Lyon
    29.Manojlovic Gacic E, Skender-Gazibara M, Soldatovic I, Dundjerovic D, Boricic N, Raicevic S, Popovic V (2015) Immunohistochemical expression of p16 and p21 in pituitary tissue adjacent to pituitary adenoma versus pituitary tissue obtained at autopsy: is there a difference? Endocrine Pathology 26:104–110. doi:10.​1007/​s12022-015-9358-7 CrossRef PubMed
    30.Kononen J, Bubendorf L, Kallioniemi A, Barlund M, Schraml P, Leighton S, Torhorst J, Mihatsch MJ, Sauter G, Kallioniemi OP (1998) Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nature Medicine 4:844–847CrossRef PubMed
    31.Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson A, Kampf C, Sjostedt E, Asplund A, Olsson I, Edlund K, Lundberg E, Navani S, Szigyarto CA, Odeberg J, Djureinovic D, Takanen JO, Hober S, Alm T, Edqvist PH, Berling H, Tegel H, Mulder J, Rockberg J, Nilsson P, Schwenk JM, Hamsten M, von Feilitzen K, Forsberg M, Persson L, Johansson F, Zwahlen M, von Heijne G, Nielsen J, Ponten F (2015) Proteomics. Tissue-based map of the human proteome. Science (New York, NY) 347:1260419. doi:10.​1126/​science.​1260419
    32.Kampf C, Olsson I, Ryberg U, Sjostedt E, Ponten F (2012) Production of tissue microarrays, immunohistochemistry staining and digitalization within the human protein atlas. Journal of Visualized Experiments : JoVE. doi:10.​3791/​3620 PubMedCentral PubMed
    33.Prasad K, Prabhu GK (2012) Image analysis tools for evaluation of microscopic views of immunohistochemically stained specimen in medical research-a review. J Med Syst 36:2621–2631. doi:10.​1007/​s10916-011-9737-7 CrossRef PubMed
    34.Obari A, Sano T, Ohyama K, Kudo E, Qian ZR, Yoneda A, Rayhan N, Mustafizur Rahman M, Yamada S (2008) Clinicopathological features of growth hormone-producing pituitary adenomas: difference among various types defined by cytokeratin distribution pattern including a transitional form. Endocrine Pathology 19:82–91. doi:10.​1007/​s12022-008-9029-z CrossRef PubMed
    35.Bakhtiar Y, Hirano H, Arita K, Yunoue S, Fujio S, Tominaga A, Sakoguchi T, Sugiyama K, Kurisu K, Yasufuku-Takano J, Takano K (2010) Relationship between cytokeratin staining patterns and clinico-pathological features in somatotropinomae. European journal of endocrinology / European Federation of Endocrine Societies 163:531–539. doi:10.​1530/​eje-10-0586 CrossRef PubMed
    36.Bhayana S, Booth GL, Asa SL, Kovacs K, Ezzat S (2005) The implication of somatotroph adenoma phenotype to somatostatin analog responsiveness in acromegaly. J Clin Endocrinol Metab 90:6290–6295. doi:10.​1210/​jc.​2005-0998 CrossRef PubMed
    37.Fougner SL, Casar-Borota O, Heck A, Berg JP, Bollerslev J (2012) Adenoma granulation pattern correlates with clinical variables and effect of somatostatin analogue treatment in a large series of patients with acromegaly. Clin Endocrinol (Oxf) 76 (1):96–102. doi:10.​1111/​j.​1365-2265.​2011.​04163.​x CrossRef
    38.Cooper O (2015) Silent corticotroph adenomas. Pituitary 18:225–231. doi:10.​1007/​s11102-014-0624-3 CrossRef PubMed
    39.Saeger W, Ludecke DK, Buchfelder M, Fahlbusch R, Quabbe HJ, Petersenn S (2007) Pathohistological classification of pituitary tumors: 10 years of experience with the German Pituitary Tumor Registry. European journal of endocrinology / European Federation of Endocrine Societies 156:203–216. doi:10.​1530/​eje.​1.​02326 CrossRef PubMed
    40.Aflorei ED, Korbonits M (2014) Epidemiology and etiopathogenesis of pituitary adenomas. J Neurooncol 117:379–394. doi:10.​1007/​s11060-013-1354-5 CrossRef PubMed
    41.Warfel NA, El-Deiry WS (2013) p21WAF1 and tumourigenesis: 20 years after. Current Opinion in Oncology 25:52–58. doi:10.​1097/​CCO.​0b013e32835b639e​ CrossRef PubMed
    42.Bianchi-Smiraglia A, Nikiforov MA (2012) Controversial aspects of oncogene-induced senescence. Cell Cycle (Georgetown, Tex) 11:4147–4151. doi:10.​4161/​cc.​22589
    43.Laberge RM, Awad P, Campisi J, Desprez PY (2012) Epithelial-mesenchymal transition induced by senescent fibroblasts. Cancer Microenviron 5:39–44. doi:10.​1007/​s12307-011-0069-4 PubMedCentral CrossRef PubMed
    44.Lekva T, Berg JP, Heck A, Lyngvi Fougner S, Olstad OK, Ringstad G, Bollerslev J, Ueland T (2013) Attenuated RORC expression in the presence of EMT progression in somatotroph adenomas following treatment with somatostatin analogs is associated with poor clinical recovery. PLoS One 8:e66927. doi:10.​1371/​journal.​pone.​0066927 PubMedCentral CrossRef PubMed
    45.Ogino A, Yoshino A, Katayama Y, Watanabe T, Ota T, Komine C, Yokoyama T, Fukushima T (2005) The p15(INK4b)/p16(INK4a)/RB1 pathway is frequently deregulated in human pituitary adenomas. Journal of Neuropathology and Experimental Neurology 64:398–403CrossRef PubMed
    46.Seemann N, Kuhn D, Wrocklage C, Keyvani K, Hackl W, Buchfelder M, Fahlbusch R, Paulus W (2001) CDKN2A/p16 inactivation is related to pituitary adenoma type and size. The Journal of Pathology 193:491–497. doi:10.​1002/​path.​833 CrossRef PubMed
    47.Yoshino A, Katayama Y, Ogino A, Watanabe T, Yachi K, Ohta T, Komine C, Yokoyama T, Fukushima T (2007) Promoter hypermethylation profile of cell cycle regulator genes in pituitary adenomas. J Neurooncol 83:153–162. doi:10.​1007/​s11060-006-9316-9 CrossRef PubMed
    48.Farrell WE (2014) Epigenetics of pituitary tumours: an update. Curr Opin Endocrinol Diabetes Obes 21:299–305. doi:10.​1097/​med.​0000000000000078​ CrossRef PubMed
    49.Ruebel KH, Jin L, Zhang S, Scheithauer BW, Lloyd RV (2001) Inactivation of the p16 gene in human pituitary nonfunctioning tumors by hypermethylation is more common in null cell adenomas. Endocrine Pathology 12: 281–9CrossRef PubMed
    50.Rickert CH, Dockhorn-Dworniczak B, Busch G, Moskopp D, Albert FK, Rama B, Paulus W (2001) Increased chromosomal imbalances in recurrent pituitary adenomas. Acta Neuropathologica 102:615–620CrossRef PubMed
    51.Turner HE, Nagy Z, Sullivan N, Esiri MM, Wass JA (2000) Expression analysis of cyclins in pituitary adenomas and the normal pituitary gland. Clin Endocrinol (Oxf) 53:337–344CrossRef
  • 作者单位:Emilija Manojlovic-Gacic (1)
    Milica Skender-Gazibara (1)
    Vera Popovic (2) (3)
    Ivan Soldatovic (3)
    Novica Boricic (1)
    Savo Raicevic (4)
    Sandra Pekic (2) (3)
    Mirjana Doknic (2) (3)
    Dragana Miljic (2) (3)
    Irina Alafuzoff (5) (6)
    Fredrik Pontén (7)
    Olivera Casar-Borota (5) (6)

    1. Institute of Pathology, Medical Faculty, University of Belgrade, Dr Subotica 1, Belgrade, Serbia
    2. Clinic of Endocrinology, Diabetes and Metabolic Diseases, Clinical Center of Serbia, Dr Subotica 13, Belgrade, Serbia
    3. Medical Faculty, University of Belgrade, Dr Subotica 8, Belgrade, Serbia
    4. Neurosurgery Clinic, Clinical Center of Serbia, Koste Todorovica 4, Belgrade, Serbia
    5. Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, Dag Hammarskjölds väg 20, Uppsala, Sweden
    6. Department of Clinical Pathology and Cytology, Uppsala University Hospital, Rudbeck Laboratory, Dag Hammarskjölds väg 20, Uppsala, Sweden
    7. Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Dag Hammarskjölds väg 20, Uppsala, Sweden
  • 刊物主题:Pathology; Endocrinology; Oncology;
  • 出版者:Springer US
  • ISSN:1559-0097
文摘
Oncogene-induced senescence (OIS) serves as an initial barrier to cancer development, being proposed as a possible explanation for the usually benign behavior of the pituitary adenomas. We aimed to explore the immunohistochemical expression of the OIS markers, senescence-associated lysosomal β-galactosidase (SA-β-GAL), p16, and p21 in different types of 345 pituitary adenomas and compared it with the expression in the normal pituitary and in the specimens from the repeated surgeries. SA-β-GAL was overexpressed in the pituitary adenomas, compared to the normal pituitaries. Growth hormone (GH) producing adenomas showed the strongest SA-β-GAL, with densely granulated (DG)-GH adenomas more reactive than the sparsely granulated (SG). Nuclear p21 was decreased in the adenomas, except for the SG-GH adenomas that had higher p21 than the normal pituitaries and the other adenomas. p16 was significantly lower in the adenomas, without type-related differences. SA-β-GAL was slightly lower and p16 slightly higher in the recurrences. Our findings indicate alterations of the senescence program in the different types of pituitary adenomas. Activation of senescence in the pituitary adenomas presents one possible explanation for their usually benign behavior, at least in the GH adenomas that show a synchronous increase of two OIS markers. However, subdivision into GH adenoma subtypes reveals differences that reflect complex regulatory mechanisms influenced by the interplay between the granularity pattern and the hormonal factors, with possible impact on the different clinical behavior of the SG- and DG-GH adenoma subtypes. p16 seems to have a more prominent role in the pituitary tumorigenesis than in the senescence. Recurrent growth in a subset of the pituitary adenomas is not associated with consistent changes in the senescence pattern. Keywords Pituitary adenoma Oncogene-induced senescence GH adenomas granulation pattern Immunohistochemistry
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.