Estimates of twenty-first century sea-level changes for Norway
详细信息    查看全文
  • 作者:Matthew J. R. Simpson (1)
    Kristian Breili (1)
    Halfdan P. Kierulf (1) (2)
  • 关键词:Sea ; level projections ; Glacial isostatic adjustment ; Norway
  • 刊名:Climate Dynamics
  • 出版年:2014
  • 出版时间:March 2014
  • 年:2014
  • 卷:42
  • 期:5-6
  • 页码:1405-1424
  • 全文大小:2,556 KB
  • 参考文献:1. Abdalati W (2007) Greenland ice sheet melt characteristics derived from passive microwave data, 2004. Boulder, Colorado USA: National Snow and Ice Data Center. Digital media
    2. Alley RB, Clark PU, Huybrechts P, Joughin I (2005) Ice-sheet and sea-level changes. Science 310:456-60 CrossRef
    3. Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the international terrestrial reference frame. J Geod 85(8):457-73. doi:10.1007/s00190-011-0444-4 CrossRef
    4. Bahr DB, Meier MF, Peckham SD (1997) The physical basis of glacier volume-area scaling. J Geophys Res 102(B9): 20,355-0,362
    5. Brunnabend S-E, Schr?ter J, Timmerman R, Rietbroek R, Kusche J (2012) Modeled steric and mass-driven sea level change caused by Greenland Ice Sheet melting. J Geodyn 59-0:219-25. doi:10.1016/j.jog.2011.06.001 CrossRef
    6. Cazenave A, Llovel W (2010) Contemporary sea level rise. Ann Rev Mar Sci 2:145-73 CrossRef
    7. Cazenave A, Dominh K, Guinehut S, Berthier E, Llovel W, Ramilien G, Ablain M, Larnicol G (2009) Sea level budget over 2003-008. A reevaluation from GRACE space gravimetry, satellite altimetry and ARGO. Glob Planet Change 65:83-8. doi:10.1016/j.gloplacha.2008.10.004 CrossRef
    8. Chao BF, Wu YH, Li YS (2008) Impact of artificial reservoir water impoundment on global sea level. Science 320(212). doi:10.1126/science.1154580
    9. Church JA, Gregory JM, White NJ, Platten SM, Mitrovica JX (2011) Understanding and projecting sea level change. Oceanogr 24(2):130-43. doi:10.5670/oceanog.2011.33 CrossRef
    10. Collins WD, Bitz CM, Blackmon ML, Bonan GB, Bretherton CS, Carton JA, Chang P, Doney SC, Hack JJ, Henderson TB et al (2006) The community climate system model version 3 (CCSM3). J Clim 19(11):2122-143 CrossRef
    11. Dahl Jensen D, Bamber J, B?ggild CE, Buch E, Christensen JH, Dethloff K., Fahnestock M, Marshall S, Rosing M, Steffen K., Thomas R, Truffer M, van den Broeke M, van der Veen CJ (2009) The Greenland ice sheet in a changing climate: snow, water, ice and permafrost in the arctic (SWIPA). Arctic Monitoring and Assessment Programme (AMAP), Oslo, pp. 115
    12. Delworth TL, Broccoli AJ, Rosati A, Stouffer RJ, Balaji V, Beesley JA, Cooke WF, Dixon KW, Dunne J, Dunne KA, Durachta JW, Findell KL, Ginoux P, Gnanadesikan A, Gordon CT, Griffies SM, Gudgel R, Harrison MJ, Held IM, Hemler RS, Horowitz LW, Klein SA, Knutson TR, Kushner PJ, Langenhorst AR, Lee HC, Lin SJ, Lu J, Malyshev SL, Milly PCD, Ramaswamy V, Russell J, Schwarzkopf MD, Shevliakova E, Sirutis JJ, Spelman MJ, Stern WF, Winton M, Wittenberg AT, Wyman B, Zeng F, Zhang R (2006) GFDL’s CM2 global coupled climate models. Part I: formulation and simulation characteristics. J Clim 19:643-74 CrossRef
    13. Dziewonski AM, Anderson DL (1981) Preliminary reference Earth model. Phys Earth Planet Inter 25(4):297-56. doi:10.1016/0031-9201(81)90046-7 CrossRef
    14. Ekman M (1996) A consistent map of the postglacial uplift of Fennoscandia. Terra Nova 8:158-65. doi:10.1111/j.1365-3121.1996.tb00739.x CrossRef
    15. Farrell WE, Clark JA (1976) On postglacial sea level. Geophys J R Astron Soc 46:647-67 CrossRef
    16. Fjeldskaar W (1994) Viscosity and thickness of the asthenosphere detected from the Fennoscandian uplift. Earth Planet Sci Lett 126:399-10. doi:10.1016/0012-821X(94)90120-1 CrossRef
    17. Flato GM (2005) The third generation coupled global climate model (CGCM3). http://www.cccma.ec.gc.ca/models/cgcm3.shtml
    18. Furevik T, Bentsen M, Drange H, Kvamsto N, Sorteberg A (2003) Description and evaluation of the Bergen climate model: ARPEGE coupled with MICOM. Clim Dyn 21:27-1 CrossRef
    19. Goelzer H, Huybrechts P, Raper SCB, Loutre M.-F, Goosse H, Fichefet T (2012) Millenial total sea-level commitments projected with the Earth system model of intermediate complexity LOVECLIM. Environ Res Lett 7(045401). doi:10.1088/1748-9326/7/4/045401
    20. Gomez N, Mitrovica JX, Tamisiea ME, Clark PU (2010) A new projection of sea level change in response to collapse of marine sectors of the Antarctic Ice Sheet. Geophys J Int 180:623-34. doi:10.1111/j.1365-246X.2009.04419.x CrossRef
    21. Gordon C, Cooper C, Senior CA, Banks HT, Gregory JM, Johns TC, Mitchell JFB, Wood RA (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16:147-68 CrossRef
    22. Gregory JM, Huybrechts P (2006) Ice-sheet contributions to future sea-level change. Phil Trans R Soc A 364:1709-731. doi:10.1098/rsta.2006.1796 CrossRef
    23. Gregory JM, Church JA, Boer GJ, Dixon KW, Flato GM, Jackett DR, Lowe JA, O’Farrell SP, Roeckner E, Russell GL, Stouffer RJ, Winton M (2001) Comparison of results from several AOGCMs for global and regional sea-level change 1900-100. Clim Dyn 18:225-40 CrossRef
    24. Hasumi H, Emori S (2004) K-1 coupled model (MIROC) description. Center for Climate System Research, University of Tokyo, K-1 Tech. Rep, 1, p. 34
    25. Henry O, Prandi P, Llovel W, Cazenave A, Jevrejeva S, Stammer D, Meyssignac B, Koldunov NV (2012) Tide gauge-based sea level variations since 1950 along the Norwegian and Russian coasts of the Arctic Ocean; Contribution of the steric components. J Geophys Res. doi:10.1029/2011JC007706
    26. Herring TA, King RW, McClusky SC (2010) Introduction to GAMIT/GLOBK, Release 10.4. http://www-gpsg.mit.edu/~simon/gtgk/Intro_GG.pdf
    27. Hill EM, Davis JL, Tamisiea ME, Lidberg M (2010) Combination of geodetic observations and models for glacial isostatic adjustment fields in Fennoscandia, J Geophys Res 115(B07403). doi:10.1029/2009JB006967
    28. Johansson JM, Davis JL, Scherneck H.-G, Milne GA, Vermeer M, Mitrovica JX, Bennett RA, Jonsson B, Elgered G, Elósegui P, Koivula H, Poutanen M, R?nn?ng BO, Shapiro II (2002) Continuous GPS measurements of postglacial adjustment in Fennoscandia 1. Geodetic results. J Geophys Res 107(B8). doi:10.1029/2001JB000400
    29. Johns TC, Durman CF, Banks HT, Roberts MJ, McLaren AJ, Ridley JK, Senior CA, Williams KD, Jones A, Rickard GJ et al (2006) The new Hadley Centre climate model (HadGEM1): Evaluation of coupled simulations. J Clim 19(7):1327-353 CrossRef
    30. Jungclaus JH, Botzet M, Haak H, Keenlyside N, Luo JJ, Latif M, Marotzke J, Mikolajewicz U, Roeckner E (2006) Ocean circulation and tropical variability in the AOGCM ECHAM5/MPI-OM. J Clim 19:3952-972 CrossRef
    31. Katsman CA, Hazeleger W, Drijfhout SS, van Oldenborgh GJ, Burgers G (2008) Climate scenarios of sea level rise for the northeast Atlantic Ocean: a study including the effects of ocean dynamics and gravity changes induced by ice melt. Clim Change. doi:10.1007/s10584-008-9442-9
    32. Katsman CA, Sterl A, Beersma JJ, van den Brink HW, Church JA, Hazeleger W, Kopp RE, Kroon D, Kwadijk J, Lammersen R, Lowe J, Oppenheimer M, Plag H-P, Ridley J, von Storch H, Vaughan DG, Vellinga P, Vermeersen LLA, van de Wal RSW, Weisse R (2011) Exploring high-end scenarios for local sea level rise to develop flood protection strategies for a low-lying delta—the Netherlands as an example. Clim Change 109:617-45. doi:10.1007/s10584-011-0037-5
    33. Kendall RA, Mitrovica JX, Milne GA (2005) On post-glacial sea level: II. Numerical formulation and comparative results on spherically symmetric models. Geophys J Int 161(3):679-06. doi:10.1111/j.1365-246X.2005.02553.x CrossRef
    34. Kierulf HP, Pettersen B, McMillan D, Willis P (2009) The kinematics of Ny-?lesund from space geodetic data. J Geodyn 48:37-6. doi:10.1016/j.jog.2009.05.002 CrossRef
    35. Kierulf HP, Ouassou M, Simpson MJR, Vest?l O (2013) A continuous velocity field for Norway. J Geod 87(4):337-49. doi:10.1007/s00190-012-0603-2
    36. Kopp RE, Mitrovica JX, Griffies SM, Yin J, Hay CC, Stouffer RJ (2010) The impact of Greenland melt on local sea levels: a partially coupled analysis of dynamic and static equilibrium effects in idealized water-hosing experiments. Climatic Change 103:619-25. doi:10.1007/s10584-010-9935-1 CrossRef
    37. Lambeck K, Smither C, Johnston P (1998) Sea-level change, glacial rebound and mantle viscosity for northern Europe. Geophys J Int 134:102-44 CrossRef
    38. Landerer FW, Jungclaus JH, Marotzke J (2007) Regional dynamic and steric sea level change in response to the IPCC-A1B scenario. J Phys Oceanogr 37:296-12 CrossRef
    39. Lemke P, Ren J, Alley RB, Allison I, Carrasco J, Flato G, Fujii Y,Kaser G, Mote P, Thomas RH, Zhang T (2007) Observations: changes in snow, ice and frozen ground. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the 4th assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge
    40. Lidberg M, Johansson JM, Scherneck H-G, Davis JL (2007) An improved and extended GPS-derived 3D velocity field of the glacial isostatic adjustment (GIA) in Fennoscandia. J Geodyn 81:213-30. doi:10.1007/s00190-006-0102-4 CrossRef
    41. Lidberg M, Johansson JM, Scherneck H-G, Milne GA (2010) Recent results based on continuous GPS observations of the GIA process in Fennoscandia from BIFROST. J Geodyn 50:8-8. doi:10.1016/j.jog.2009.11.010 CrossRef
    42. Lowe JA, Gregory JM (2006) Understanding projections of sea level rise in a Hadley Centre coupled climate model. J Geophys Res C11014. doi:10.1029/2005JC003421
    43. Lowe JA, Howard TP, Pardaens A, Tinker J, Holt J, Wakelin S, Milne G, Leake J, Wolf J, Horsburgh K, Reeder T, Jenkins G, Ridley J, Dye S, Bradley S (2009) UK Climate Projections science report: Marine and coastal projections. Met Office Hadley Centre, Exeter
    44. Lucarini L, Russell GL (2002) Comparison of mean climate trends in the northern hemisphere between National Centers for Environmental Prediction and two atmosphere-ocean model forced runs. J Geophys Res 107(D15):4269. doi:10.1029/2001JD001247
    45. Maximenko N, Niiler P, Centurioni L, Rio M, Melnichenko O, Chambers D, Zlotnicki V, Galperin B (2009) Mean dynamic topography of the ocean derived from satellite and drifting buoy data using three different techniques. J Atmos Ocean Technol 26(9):1910-919 CrossRef
    46. Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye A, Gregory J, Kitoh A, Knutti R, Murphy J, Noda A, Raper S, Watterson I, Weaver A, Zhao ZC (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds), Climate change 2007: the physical science basis. Contribution of working group I to the 4th assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge
    47. Meier MF, Dyurgerov MB, Rick UK, O’Neel S, Pfeffer WT, Anderson RS, Anderson SP, Glazovsky AF (2007) Glaciers dominate eustatic sea-level rise in the twenty-first century. Science 317:1064-067. doi:10.1126/science.1143906 CrossRef
    48. Milne GA, Mitrovica JX (1998) Postglacial sea-level change on a rotating Earth. Geophys J Int 133:1-9 CrossRef
    49. Milne GA, Davis JL, Mitrovica JX, Scherneck H-G, Johansson JM, Vermeer M, Koivula H (2001) Space-geodetic constraints on glacial isostatic adjustment in Fennoscandia. Science 291:2381-385. doi:10.1126/science.1057022 CrossRef
    50. Milne GA, Mitrovica JX, Scherneck HG, Davis JL, Johansson JM (2004) Continuous GPS measurements of postglacial adjustment in Fennoscandia: 2. modeling results. J Geophys Res 109(B02412). doi:10.1029/2003JB002619
    51. Milne GA, Gehrels WR, Hughes CW, Tamisiea ME (2009) Identifying the causes for sea-level change. Nat Geosci 2:471-78. doi:10.1038/NGEO544 CrossRef
    52. Min SK, Legutke S, Hense A, Kwon WT (2005) Climatology and internal variability in a 1000-year control simulation with the coupled climate model ECHO-G. Tellus 57A:605-21 CrossRef
    53. Mitrovica JX, Milne GA (2003) On post-glacial sea level: I. General theory. Geophys J Int 154(2):253-67. doi:10.1046/j.1365-246X.2003.01942.x CrossRef
    54. Mitrovica JX, Davis JL, Shapiro II (1994) A spectral formalism for computing 3-dimensional deformations due to surface loads: 1. Theory. J Geophys Res 99(B4):7057-073. doi:10.1029/93JB03128
    55. Mitrovica JX, Milne GA, Davis JL (2001a) Glacial isostatic adjustment on a rotating Earth. Geophys J Int 147:562-78. doi:10.1046/j.1365-246x.2001.01550.x CrossRef
    56. Mitrovica JX, Tamisiea ME, Davis JL, Milne GA (2001b) Recent mass balance of polar ice sheets inferred from patterns of global sea-level change. Nature 409:1026-029 CrossRef
    57. Mitrovica JX, Gomez N, Clark PU (2009) The sea-level fingerprint of West Antarctic collapse. Science 323:753 CrossRef
    58. Mitrovica JX, Gomez N, Morrow E, Hay C, Latychev K, Tamisiea ME (2011) On the robustness of predictions of sea level fingerprints. Geophys J Int 187:729-42. doi:10.1111/j.1365-246X.2011.05090.x CrossRef
    59. Nakicenovic N, Swart R (eds) (2000) Emission scenarios. Cambridge University Press, Cambridge
    60. Niiler P, Maximenko N, McWilliams J (2003) Dynamically balanced absolute sea level of the global ocean derived from near-surface velocity observations. Geophys Res Lett 30(22):2164 CrossRef
    61. Pardaens AK, Gregory JM, Lowe JA (2011) A model study of factors influencing projected changes in regional sea level over the twenty-first century. Clim Dyn 36:2015-033. doi:10.1007/s00382-009-0738-x CrossRef
    62. Peltier WR (1974) The impulse response of a Maxwell Earth. Rev Geophys Space Phys 12:649-69. doi:10.1029/RG012i004p00649 CrossRef
    63. Pfeffer WT (2011) Land ice and sea level rise: a thirty-year perspective. Oceanogr 24(2):94-11. doi:10.5670/oceanog.2011.30 CrossRef
    64. Pfeffer WT, Harper J, ONeel S (2008) Kinematic constraints on glacier contributions to twenty-first-century sea-level rise. Science 321:1340-343 CrossRef
    65. Radi? V, Hock R (2010) Regional and global volumes of glaciers derived from statistical upscaling of glacier inventory data. J Geophys Res 115(F01010). doi:10.1029/2009JF001373
    66. Rahmstorf S (2007) A semi-empirical approach to projecting future sea level rise. Science 315:368-70. doi:10.1126/science.1135456 CrossRef
    67. Richter K., Nilsen JE?, Drange H (2012) Contributions to sea level variability along the Norwegian coast for 1960-010, J Geophys Res 117(C05038). doi:10.1029/2011JC007826
    68. Schmidt GA, Ruedy R, Hansen JE, Aleinov I, Bell N, Bauer M, Bauer S, Cairns B, Canuto V, Cheng Y, Del Genio A, Faluvegi G, Friend AD, Hall TM, Hu Y, Kelley M, Kiang NY, Koch D, Lacis AA, Lerner J, Lo KK, Miller RL, Nazarenko L, Oinas V, Perlwitz J, Rind D, Romanou A, Russell GL, Sato M, Shindell DT, Stone PH, Sun S, Tausnev N, Thresher D, Yao MS (2006) Present day atmospheric simulations using GISS ModelE: comparison to in situ, satellite and reanalysis data. J Clim 19:153-92 CrossRef
    69. Slangen ABA, Katsman CA, van de Wal RSW, Vermeersen LLA, Riva REM (2012) Towards regional projections of twenty-first century sea-level change based on IPCC SRES scenarios. Clim Dyn 38(5):1191-209. doi:10.1007/s00382-011-1057-6 CrossRef
    70. Stammer D (2008) Response of the global ocean to Greenland and Antarctic ice melting. J Geophys Res 113(C06022). doi:10.1029/2006JC004079
    71. Stammer D, Agarwal N, Herrmann P, Kohl A, Mechoso CR (2011) Response of a coupled ocean-atmosphere model to greenland ice melting. Survey in Geophysics 32(4-):621-42 CrossRef
    72. Steffen H, Kaufmann G (2005) Glacial isostatic adjustment of Scandinavia and northwestern Europe and the radial viscosity structure of the Earth’s mantle. Geophys J Int 163(2):801-12. doi:10.1111/j.1365-246X.2005.02740.x CrossRef
    73. Steffen H, Wu P (2011) Glacial isostatic adjustment in Fennoscandia - a review of data and modeling. J Geodyn 52(3-):160-004. doi:10.1016/j.jog.2011.03.002
    74. Tamisiea M (2011) Ongoing glacial isostatic contributions to observations of sea level change. Geophys J Int 186(6):1036-044 CrossRef
    75. Tamisiea ME, Mitrovica JX (2011) The moving boundaries of sea level change: understanding the origins of geographic variability. Oceanogr 24(2):24-9. doi:10.5670/oceanog.2011.25 CrossRef
    76. Tushingham AM, Peltier WR (1991) Ice-G: a new global model of late Pleistocene deglaciation based upon geophysical predictions of post-glacial relative sea level change. J Geophys Res 96:4497-523. doi:10.1029/90JB01583 CrossRef
    77. Vellinga P, Katsman CA, Sterl A, Beersma JJ, Church JA, Hazeleger W, Kopp RE, Kroon D, Kwadijk J, Lammersen R, Lowe J, Marinova N, Oppenheimer M, Plag HP, Rahmstorf S, Ridley J, von Storch H, Vaughan DG, van der Wal RSW, Weisse R (2008) Exploring high-end climate change scenarios for flood protection of The Netherlands. International scientific assessment carried out at request of the delta committee. Scientific Report WR-2009-05. KNMI/Alterra, The Netherlands. Available from http://www.knmi.nl/bibliotheek/knmipubWR/WR2009-05.pdf
    78. Wada Y, van Beek LPH, van Kempen CM, Reckman JWTM, Vasak S, Bierkens MFP (2010) Global depletion of groundwater resources. Geophys Res Lett. 37(L20402). doi:10.1029/2010GL044571
    79. Wada Y, van Beek LPH, Weiland FCS, Chao BF, Wu YH, Bierkens MFP (2012) Past and future contribution of global groundwater depletion to sea-level rise. Geophys Res Lett 39(L09402). doi:10.1029/2012GL051230
    80. Washington WM, Weatherly JW, Meehl GA, Semtner AJ Jr, Bettge T, Craig A, Strand W Jr, Arblaster J, Wayland V, James R, Zhang Y (2000) Parallel climate model (PCM) control and transient simulations. Clim Dyn 16:755-74 CrossRef
    81. Whitehouse P, Latychev K., Milne GA, Mitrovica JX, Kendall R (2006) Impact of 3D Earth structure on Fennoscandian glacial isostatic adjustment: implications for space-geodetic estimates of presentday crustal deformations. Geophys Res Lett 33(13502). doi:10.1029/2006GL026568
    82. Williams SDP (2008) CATS: GPS coordinate time series analysis software. GPS Solutions 12(2):147-53. doi:110.1007/s10291-10007-10086-10294 CrossRef
    83. Williams SDP, Bock Y, Fang P, Jamason P, Nikolaidis RM, Prawirodirdjo L, Miller M, Johnson DJ (2004) Error analysis of continuous GPS position time series. J Geophys Res 109:1-9
    84. Wu X, Collilieux X, Altamimi Z, Vermeersen B, Gross R, Fukumori I (2011) Accuracy of the international terrestrial reference frame origin and earth expansion. Geophys Res Lett 38(L13304). doi:10.1029/2011GL047450
    85. Yin J, Griffies SM, Stouffer RJ (2010) Spatial variability of sea-level rise in the twenty-first century projections. J Clim 23:4585-607. doi:10.1175/2010JCLI3533.1 CrossRef
    86. Yongqiang Y, Rucong Y, Xuehong Z, Hailong L (2002) A flexible global coupled climate model. Adv Atmos Sci 19:169-90
    87. Yukimoto S, Noda A (2002) Improvements of the meteorological research institute global ocean-atmosphere coupled GCM (MRICGCM2) and its climate sensitivity. Tech rep 10, NIES, Japan
  • 作者单位:Matthew J. R. Simpson (1)
    Kristian Breili (1)
    Halfdan P. Kierulf (1) (2)

    1. Geodetic Institute, Norwegian Mapping Authority, H?nefoss, Norway
    2. Department of Geosciences, University of Oslo, Oslo, Norway
  • ISSN:1432-0894
文摘
In this work we establish a framework for estimating future regional sea-level changes for Norway. Following recently published works, we consider how different physical processes drive non-uniform sea-level changes by accounting for spatial variations in (1) ocean density and circulation (2) ice and ocean mass changes and associated gravitational effects on sea level and (3) vertical land motion arising from past surface loading change and associated gravitational effects on sea level. An important component of past and present sea-level change in Norway is glacial isostatic adjustment. Central to our study, therefore, is a reassessment of vertical land motion using a far larger set of new observations from a permanent GNSS network. Our twenty-first century sea-level estimates are split into two parts. Firstly, we show regional projections largely based on findings from the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4) and dependent on the emission scenarios A2, A1B and B1. These indicate that twenty-first century relative sea-level changes in Norway will vary between ?.2 to 0.3?m (1-sigma?±?0.13?m). Secondly, we explore a high-end scenario, in which a global atmospheric temperature rise of up to 6?°C and emerging collapse for some areas of the Antarctic ice sheets are assumed. Using this approach twenty-first century relative sea-level changes in Norway are found to vary between 0.25 and 0.85?m (min/max?±?0.45?m). We attach no likelihood to any of our projections owing to the lack of understanding of some of the processes that cause sea-level change.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.