TCR gene-modified T cells can efficiently treat established hepatitis C-associated hepatocellular carcinoma tumors
详细信息    查看全文
  • 作者:Timothy T. Spear ; Glenda G. Callender…
  • 关键词:T cell ; T cell receptor ; Cancer ; Adoptive cell transfer ; Hepatitis C virus ; Hepatocellular carcinoma
  • 刊名:Cancer Immunology, Immunotherapy
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:65
  • 期:3
  • 页码:293-304
  • 全文大小:973 KB
  • 参考文献:1.Callender GG, Rosen HR, Roszkowski JJ, Lyons GE, Li M, Moore T, Brasic N, McKee MD, Nishimura MI (2006) Identification of a hepatitis C virus-reactive T cell receptor that does not require CD8 for target cell recognition. Hepatology 43(5):973–981. doi:10.​1002/​hep.​21157 CrossRef PubMed
    2.Clay TM, Custer MC, Sachs J, Hwu P, Rosenberg SA, Nishimura MI (1999) Efficient transfer of a tumor antigen-reactive TCR to human peripheral blood lymphocytes confers anti-tumor reactivity. J Immunol 163(1):507–513PubMed
    3.Cole DJ, Weil DP, Shilyansky J, Custer M, Kawakami Y, Rosenberg SA, Nishimura MI (1995) Characterization of the functional specificity of a cloned T-cell receptor heterodimer recognizing the MART-1 melanoma antigen. Cancer Res 55(4):748–752PubMed
    4.Kuball J, Schmitz FW, Voss RH, Ferreira EA, Engel R, Guillaume P, Strand S, Romero P, Huber C, Sherman LA, Theobald M (2005) Cooperation of human tumor-reactive CD4+ and CD8+ T cells after redirection of their specificity by a high-affinity p53A2.1-specific TCR. Immunity 22(1):117–129. doi:10.​1016/​j.​immuni.​2004.​12.​005 CrossRef PubMed
    5.Rosati SF, Parkhurst MR, Hong Y, Zheng Z, Feldman SA, Rao M, Abate-Daga D, Beard RE, Xu H, Black MA, Robbins PF, Schrump DA, Rosenberg SA, Morgan RA (2014) A novel murine T-cell receptor targeting NY-ESO-1. J Immunother 37(3):135–146. doi:10.​1097/​cji.​0000000000000019​ CrossRef PubMed
    6.Roszkowski JJ, Lyons GE, Kast WM, Yee C, Van Besien K, Nishimura MI (2005) Simultaneous generation of CD8+ and CD4+ melanoma-reactive T cells by retroviral-mediated transfer of a single T-cell receptor. Cancer Res 65(4):1570–1576. doi:10.​1158/​0008-5472.​can-04-2076 CrossRef PubMed
    7.Shilyansky J, Nishimura MI, Yannelli JR, Kawakami Y, Jacknin LS, Charmley P, Rosenberg SA (1994) T-cell receptor usage by melanoma-specific clonal and highly oligoclonal tumor-infiltrating lymphocyte lines. Proc Natl Acad Sci USA 91(7):2829–2833CrossRef PubMed PubMedCentral
    8.Stanislawski T, Voss RH, Lotz C, Sadovnikova E, Willemsen RA, Kuball J, Ruppert T, Bolhuis RL, Melief CJ, Huber C, Stauss HJ, Theobald M (2001) Circumventing tolerance to a human MDM2-derived tumor antigen by TCR gene transfer. Nat Immunol 2(10):962–970. doi:10.​1038/​ni1001-962 CrossRef PubMed
    9.Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM, Dudley ME, Wunderlich JR, Nahvi AV, Helman LJ, Mackall CL, Kammula US, Hughes MS, Restifo NP, Raffeld M, Lee CC, Levy CL, Li YF, El-Gamil M, Schwarz SL, Laurencot C, Rosenberg SA (2011) Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol 29(7):917–924. doi:10.​1200/​jco.​2010.​32.​2537 CrossRef PubMed PubMedCentral
    10.Morgan RA, Chinnasamy N, Abate-Daga D, Gros A, Robbins PF, Zheng Z, Dudley ME, Feldman SA, Yang JC, Sherry RM, Phan GQ, Hughes MS, Kammula US, Miller AD, Hessman CJ, Stewart AA, Restifo NP, Quezado MM, Alimchandani M, Rosenberg AZ, Nath A, Wang T, Bielekova B, Wuest SC, Akula N, McMahon FJ, Wilde S, Mosetter B, Schendel DJ, Laurencot CM, Rosenberg SA (2013) Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J Immunother 36(2):133–151. doi:10.​1097/​CJI.​0b013e3182829903​ CrossRef PubMed PubMedCentral
    11.Chodon T, Comin-Anduix B, Chmielowski B, Koya RC, Wu Z, Auerbach M, Ng C, Avramis E, Seja E, Villanueva A, McCannel TA, Ishiyama A, Czernin J, Radu CG, Wang X, Gjertson DW, Cochran AJ, Cornetta K, Wong DJ, Kaplan-Lefko P, Hamid O, Samlowski W, Cohen PA, Daniels GA, Mukherji B, Yang L, Zack JA, Kohn DB, Heath JR, Glaspy JA, Witte ON, Baltimore D, Economou JS, Ribas A (2014) Adoptive transfer of MART-1 T-cell receptor transgenic lymphocytes and dendritic cell vaccination in patients with metastatic melanoma. Clin Cancer Res 20(9):2457–2465. doi:10.​1158/​1078-0432.​ccr-13-3017 CrossRef PubMed PubMedCentral
    12.Hepatitis C fact sheet (2015) World Health Organization. http://​www.​who.​int/​mediacentre/​factsheets/​fs164/​en/​ . Accessed July 2015
    13.Hepatitis C FAQs (2015) National Centers for Disease Control and Prevention. http://​www.​cdc.​gov/​hepatitis/​hcv/​hcvfaq.​htm . Accessed July 2015
    14.Campos-Varela I, Lai JC, Verna EC, O’Leary JG, Todd Stravitz R, Forman LM, Trotter JF, Brown RS, Terrault NA (2015) Hepatitis C genotype influences post-liver transplant outcomes. Transplantation 99(4):835–840. doi:10.​1097/​tp.​0000000000000413​ CrossRef PubMed PubMedCentral
    15.Hézode C, Forestier N, Dusheiko G, Ferenci P, Pol S, Goeser T, Bronowicki J-P, Bourlière M, Gharakhanian S, Bengtsson L, McNair L, George S, Kieffer T, Kwong A, Kauffman RS, Alam J, Pawlotsky J-M, Zeuzem S (2009) Telaprevir and peginterferon with or without ribavirin for chronic HCV infection. N Engl J Med 360(18):1839–1850. doi:10.​1056/​NEJMoa0807650 CrossRef PubMed
    16.Kwo PY, Lawitz EJ, McCone J, Schiff ER, Vierling JM, Pound D, Davis MN, Galati JS, Gordon SC, Ravendhran N, Rossaro L, Anderson FH, Jacobson IM, Rubin R, Koury K, Pedicone LD, Brass CA, Chaudhri E, Albrecht JK (2010) Efficacy of boceprevir, an NS3 protease inhibitor, in combination with peginterferon alfa-2b and ribavirin in treatment-naive patients with genotype 1 hepatitis C infection (SPRINT-1): an open-label, randomised, multicentre phase 2 trial. Lancet 376(9742):705–716. doi:10.​1016/​s0140-6736(10)60934-8 CrossRef PubMed
    17.Manns M, Marcellin P, Poordad F, de Araujo ES, Buti M, Horsmans Y, Janczewska E, Villamil F, Scott J, Peeters M, Lenz O, Ouwerkerk-Mahadevan S, De La Rosa G, Kalmeijer R, Sinha R, Beumont-Mauviel M (2014) Simeprevir with pegylated interferon alfa 2a or 2b plus ribavirin in treatment-naive patients with chronic hepatitis C virus genotype 1 infection (QUEST-2): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet 384(9941):414–426. doi:10.​1016/​s0140-6736(14)60538-9 CrossRef PubMed
    18.Berger KL, Scherer J, Ranga M, Sha N, Stern JO, Quinson AM, Kukolj G (2015) Baseline polymorphisms and emergence of drug resistance in the NS3/4A protease of HCV genotype-1 following TREATMENT with faldaprevir plus pegylated interferon Alfa-2a and ribavirin in phase 2 and phase 3 studies. Antimicrob Agents Chemother 59(10):6017–6025. doi:10.​1128/​aac.​00932-15 CrossRef PubMed
    19.De Luca A, Di Giambenedetto S, Lo Presti A, Sierra S, Prosperi M, Cella E, Giovanetti M, Torti C, Caudai C, Vicenti I, Saladini F, Almi P, Grima P, Blanc P, Fabbiani M, Rossetti B, Gagliardini R, Kaiser R, Ciccozzi M, Zazzi M (2015) Two distinct hepatitis C virus genotype 1a clades have different geographical distribution and association with natural resistance to NS3 protease inhibitors. Open Forum Infect Dis 2(2):ofv43. doi:10.​1093/​ofid/​ofv043
    20.Nagpal N, Goyal S, Wahi D, Jain R, Jamal S, Singh A, Rana P, Grover A (2015) Molecular principles behind Boceprevir resistance due to mutations in hepatitis C NS3/4A protease. Gene 570(1):115–121. doi:10.​1016/​j.​gene.​2015.​06.​008 CrossRef PubMed
    21.Lechmann M, Liang TJ (2000) Vaccine development for hepatitis C. Semin Liv Dis 20(2):211–226. doi:10.​1055/​s-2000-9947 CrossRef
    22.Trujillo-Murillo Kdel C, Garza-Rodriguez Mdel L, Martinez-Rodriguez HG, Barrera-Saldana HA, Bosques-Padilla F, Ramos-Jimenez J, Rivas-Estilla AM (2004) Experimental models for hepatitis C virus (HCV): new opportunities for combating hepatitis C. Ann Hepatol 3(2):54–62PubMed
    23.Rosen HR, Hinrichs DJ, Leistikow RL, Callender G, Wertheimer AM, Nishimura MI, Lewinsohn DM (2004) Cutting edge: identification of hepatitis C virus-specific CD8+ T cells restricted by donor HLA alleles following liver transplantation. J Immunol 173(9):5355–5359CrossRef PubMed
    24.Treisman J, Hwu P, Minamoto S, Shafer GE, Cowherd R, Morgan RA, Rosenberg SA (1995) Interleukin-2-transduced lymphocytes grow in an autocrine fashion and remain responsive to antigen. Blood 85(1):139–145PubMed
    25.Roszkowski JJ, Yu DC, Rubinstein MP, McKee MD, Cole DJ, Nishimura MI (2003) CD8-independent tumor cell recognition is a property of the T cell receptor and not the T cell. J Immunol 170(5):2582–2589CrossRef PubMed
    26.Norell H, Zhang Y, McCracken J, Martins da Palma T, Lesher A, Liu Y, Roszkowski JJ, Temple A, Callender GG, Clay T, Orentas R, Guevara-Patino J, Nishimura MI (2010) CD34-based enrichment of genetically engineered human T cells for clinical use results in dramatically enhanced tumor targeting. Cancer Immunol Immunother 59(6):851–862. doi:10.​1007/​s00262-009-0810-8 CrossRef PubMed PubMedCentral
    27.Rettig MP, Ritchey JK, Meyerrose TE, Haug JS, DiPersio JF (2003) Transduction and selection of human T cells with novel CD34/thymidine kinase chimeric suicide genes for the treatment of graft-versus-host disease. Mol Ther 8(1):29–41CrossRef PubMed
    28.Flecken T, Schmidt N, Hild S, Gostick E, Drognitz O, Zeiser R, Schemmer P, Bruns H, Eiermann T, Price DA, Blum HE, Neumann-Haefelin C, Thimme R (2014) Immunodominance and functional alterations of tumor-associated antigen-specific CD8+ T-cell responses in hepatocellular carcinoma. Hepatology 59(4):1415–1426. doi:10.​1002/​hep.​26731 CrossRef PubMed PubMedCentral
    29.Schmidt N, Flecken T, Thimme R (2014) Tumor-associated antigen specific CD8 T cells in hepatocellular carcinoma—a promising target for immunotherapy. Oncoimmunology 3(9):e954919. doi:10.​4161/​21624011.​2014.​954919 CrossRef PubMed PubMedCentral
    30.Shang XY, Chen HS, Zhang HG, Pang XW, Qiao H, Peng JR, Qin LL, Fei R, Mei MH, Leng XS, Gnjatic S, Ritter G, Simpson AJ, Old LJ, Chen WF (2004) The spontaneous CD8+ T-cell response to HLA-A2-restricted NY-ESO-1b peptide in hepatocellular carcinoma patients. Clin Cancer Res 10(20):6946–6955. doi:10.​1158/​1078-0432.​ccr-04-0502 CrossRef PubMed
    31.Sideras K, Bots SJ, Biermann K, Sprengers D, Polak WG, Jn IJ, de Man RA, Pan Q, Sleijfer S, Bruno MJ, Kwekkeboom J (2015) Tumour antigen expression in hepatocellular carcinoma in a low-endemic western area. Br J Cancer 112(12):1911–1920. doi:10.​1038/​bjc.​2015.​92 CrossRef PubMed PubMedCentral
    32.Xu H, Gu N, Liu ZB, Zheng M, Xiong F, Wang SY, Li N, Lu J (2012) NY-ESO-1 expression in hepatocellular carcinoma: a potential new marker for early recurrence after surgery. Oncol Lett 3(1):39–44. doi:10.​3892/​ol.​2011.​441 PubMed PubMedCentral
    33.Gao W, Kim H, Ho M (2015) Human monoclonal antibody targeting the heparan sulfate chains of glypican-3 inhibits HGF-mediated migration and motility of hepatocellular carcinoma cells. PLoS One 10(9):e0137664. doi:10.​1371/​journal.​pone.​0137664 CrossRef PubMed PubMedCentral
    34.Geramizadeh B, Seirfar N (2015) Diagnostic value of arginase-1 and glypican-3 in differential diagnosis of hepatocellular carcinoma, cholangiocarcinoma and metastatic carcinoma of liver. Hepat Mon 15(7):e30336. doi:10.​5812/​hepatmon30336v2 PubMed PubMedCentral
    35.Hanaoka H, Nagaya T, Sato K, Nakamura Y, Watanabe R, Harada T, Gao W, Feng M, Phung Y, Kim I, Paik CH, Choyke PL, Ho M, Kobayashi H (2015) Glypican-3 targeted human heavy chain antibody as a drug carrier for hepatocellular carcinoma therapy. Mol Pharm 12(6):2151–2157. doi:10.​1021/​acs.​molpharmaceut.​5b00132 CrossRef PubMed
    36.Wang L, Yao M, Pan LH, Qian Q, Yao DF (2015) Glypican-3 is a biomarker and a therapeutic target of hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int 14(4):361–366CrossRef PubMed
    37.Wu Y, Liu H, Weng H, Zhang X, Li P, Fan CL, Li B, Dong PL, Li L, Dooley S, Ding HG (2015) Glypican-3 promotes epithelial-mesenchymal transition of hepatocellular carcinoma cells through ERK signaling pathway. Int J Oncol 46(3):1275–1285. doi:10.​3892/​ijo.​2015.​2827 PubMed
    38.Dargel C, Bassani-Sternberg M, Hasreiter J, Zani F, Bockmann JH, Thiele F, Bohne F, Wisskirchen K, Wilde S, Sprinzl MF, Schendel DJ, Krackhardt AM, Uckert W, Wohlleber D, Schiemann M, Stemmer K, Heikenwalder M, Busch DH, Richter G, Mann M, Protzer U (2015) T Cells engineered to express a T-cell receptor specific for glypican-3 to recognize and kill hepatoma cells in vitro and in mice. Gastroenterology 149(4):1042–1052. doi:10.​1053/​j.​gastro.​2015.​05.​055 CrossRef PubMed
    39.But DY, Lai CL, Yuen MF (2008) Natural history of hepatitis-related hepatocellular carcinoma. World J Gastroenterol 14(11):1652–1656CrossRef PubMed PubMedCentral
    40.de Oliveria Andrade LJ, D’Oliveira A, Melo RC, De Souza EC, Costa Silva CA, Parana R (2009) Association between hepatitis C and hepatocellular carcinoma. J Glob Infect Dis 1(1):33–37. doi:10.​4103/​0974-777x.​52979 CrossRef PubMed PubMedCentral
    41.Koike K (2007) Hepatitis C virus contributes to hepatocarcinogenesis by modulating metabolic and intracellular signaling pathways. J Gastroenterol Hepatol 22(Suppl 1):S108–S111. doi:10.​1111/​j.​1440-1746.​2006.​04669.​x CrossRef PubMed
    42.Pawlotsky JM (2004) Pathophysiology of hepatitis C virus infection and related liver disease. Trends Microbiol 12(2):96–102. doi:10.​1016/​j.​tim.​2003.​12.​005 CrossRef PubMed
    43.Pasetto A, Frelin L, Aleman S, Holmstrom F, Brass A, Ahlen G, Brenndorfer ED, Lohmann V, Bartenschlager R, Sallberg M, Bertoletti A, Chen M (2012) TCR-redirected human T cells inhibit hepatitis C virus replication: hepatotoxic potential is linked to antigen specificity and functional avidity. J Immunol 189(9):4510–4519. doi:10.​4049/​jimmunol.​1201613 CrossRef PubMed
    44.Duval L, Schmidt H, Kaltoft K, Fode K, Jensen JJ, Sorensen SM, Nishimura MI, von der Maase H (2006) Adoptive transfer of allogeneic cytotoxic T lymphocytes equipped with a HLA-A2 restricted MART-1 T-cell receptor: a phase I trial in metastatic melanoma. Clin Cancer Res 12(4):1229–1236. doi:10.​1158/​1078-0432.​ccr-05-1485 CrossRef PubMed
    45.Gerlach JT, Diepolder HM, Jung MC, Gruener NH, Schraut WW, Zachoval R, Hoffmann R, Schirren CA, Santantonio T, Pape GR (1999) Recurrence of hepatitis C virus after loss of virus-specific CD4(+) T-cell response in acute hepatitis C. Gastroenterology 117(4):933–941CrossRef PubMed
    46.Missale G, Bertoni R, Lamonaca V, Valli A, Massari M, Mori C, Rumi MG, Houghton M, Fiaccadori F, Ferrari C (1996) Different clinical behaviors of acute hepatitis C virus infection are associated with different vigor of the anti-viral cell-mediated immune response. J Clin Invest 98(3):706–714. doi:10.​1172/​jci118842 CrossRef PubMed PubMedCentral
    47.Thimme R, Oldach D, Chang KM, Steiger C, Ray SC, Chisari FV (2001) Determinants of viral clearance and persistence during acute hepatitis C virus infection. J Exp Med 194(10):1395–1406CrossRef PubMed PubMedCentral
    48.Semmo N, Klenerman P (2007) CD4+ T cell responses in hepatitis C virus infection. World J Gastroenterol 13(36):4831–4838CrossRef PubMed PubMedCentral
    49.Freeman ML, Burkum CE, Cookenham T, Roberts AD, Lanzer KG, Huston GE, Jensen MK, Sidney J, Peters B, Kohlmeier JE, Woodland DL, van Dyk LF, Sette A, Blackman MA (2014) CD4 T cells specific for a latency-associated gamma-herpesvirus epitope are polyfunctional and cytotoxic. J Immunol 193(12):5827–5834. doi:10.​4049/​jimmunol.​1302060 CrossRef PubMed PubMedCentral
    50.Keesen TS, Gomes JA, Fares RC, de Araujo FF, Ferreira KS, Chaves AT, Rocha MO, Correa-Oliveira R (2012) Characterization of CD4(+) cytotoxic lymphocytes and apoptosis markers induced by Trypanossoma cruzi infection. Scand J Immunol 76(3):311–319. doi:10.​1111/​j.​1365-3083.​2012.​02730.​x CrossRef PubMed
    51.Kitano S, Tsuji T, Liu C, Hirschhorn-Cymerman D, Kyi C, Mu Z, Allison JP, Gnjatic S, Yuan JD, Wolchok JD (2013) Enhancement of tumor-reactive cytotoxic CD4+ T cell responses after ipilimumab treatment in four advanced melanoma patients. Cancer Immunol Res 1(4):235–244. doi:10.​1158/​2326-6066.​cir-13-0068 CrossRef PubMed
    52.Morales O, Depil S, Mrizak D, Martin N, Ndour PA, Dufosse F, Miroux C, Coll J, de Launoit Y, Auriault C, Pancre V, Delhem N (2012) EBV latency II-derived peptides induce a specific CD4+ cytotoxic T-cell activity and not a CD4+ regulatory T-cell response. J Immunother 35(3):254–266. doi:10.​1097/​CJI.​0b013e31824d72c5​ CrossRef PubMed
    53.Campo DS, Dimitrova Z, Yamasaki L, Skums P, Lau DT, Vaughan G, Forbi JC, Teo CG, Khudyakov Y (2014) Next-generation sequencing reveals large connected networks of intra-host HCV variants. BMC Genom 15(Suppl 5):S4. doi:10.​1186/​1471-2164-15-s5-s4 CrossRef
    54.Cusick MF, Yang M, Gill JC, Eckels DD (2011) Naturally occurring CD4+ T-cell epitope variants act as altered peptide ligands leading to impaired helper T-cell responses in hepatitis C virus infection. Hum Immunol 72(5):379–385. doi:10.​1016/​j.​humimm.​2011.​02.​010 CrossRef PubMed PubMedCentral
    55.Gededzha MP, Mphahlele MJ, Selabe SG (2014) Characterization of HCV genotype 5a envelope proteins: implications for vaccine development and therapeutic entry target. Hepat Mon 14(11):e23660. doi:10.​5812/​hepatmon.​23660 CrossRef PubMed PubMedCentral
    56.Kolls JK, Szabo G (2015) The genetics of hepatitis C virus underlie its ability to escape humoral immunity. J Clin Invest 125(1):97–98. doi:10.​1172/​jci79424 CrossRef PubMed PubMedCentral
    57.Skums P, Bunimovich L, Khudyakov Y (2015) Antigenic cooperation among intrahost HCV variants organized into a complex network of cross-immunoreactivity. Proc Natl Acad Sci USA 112(21):6653–6658. doi:10.​1073/​pnas.​1422942112 CrossRef PubMed PubMedCentral
    58.Ulsenheimer A, Paranhos-Baccala G, Komurian-Pradel F, Raziorrouh B, Kurktschiev P, Diepolder HM, Zachoval R, Spannagl M, Jung MC, Gruener NH (2013) Lack of variant specific CD8+ T-cell response against mutant and pre-existing variants leads to outgrowth of particular clones in acute hepatitis C. Virol J 10:295. doi:10.​1186/​1743-422x-10-295 CrossRef PubMed PubMedCentral
    59.Zhang Y, Liu Y, Moxley KM, Golden-Mason L, Hughes MG, Liu T, Heemskerk MH, Rosen HR, Nishimura MI (2010) Transduction of human T cells with a novel T-cell receptor confers anti-HCV reactivity. PLoS Pathog 6(7):e1001018. doi:10.​1371/​journal.​ppat.​1001018 CrossRef PubMed PubMedCentral
  • 作者单位:Timothy T. Spear (1)
    Glenda G. Callender (2) (3)
    Jeffrey J. Roszkowski (2)
    Kelly M. Moxley (1) (4)
    Patricia E. Simms (5)
    Kendra C. Foley (1)
    David C. Murray (1)
    Gina M. Scurti (1) (4)
    Mingli Li (4)
    Justin T. Thomas (1)
    Alexander Langerman (2)
    Elizabeth Garrett-Mayer (6) (7)
    Yi Zhang (4) (8)
    Michael I. Nishimura (1) (2) (4)

    1. Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, 2160 S. 1st Ave, Maywood, IL, 60153, USA
    2. Department of Surgery, University of Chicago, Chicago, IL, 60637, USA
    3. Department of Surgery, Yale University School of Medicine, New Haven, CT, 06520, USA
    4. Department of Surgery, Medical University of South Carolina, Charleston, SC, 29415, USA
    5. Flow Cytometry Core Facility, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL, 60153, USA
    6. Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, 29415, USA
    7. Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29415, USA
    8. Biotherapy Center and Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People’s Republic of China
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Cancer Research
    Immunology
    Oncology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0851
文摘
The success in recent clinical trials using T cell receptor (TCR)-genetically engineered T cells to treat melanoma has encouraged the use of this approach toward other malignancies and viral infections. Although hepatitis C virus (HCV) infection is being treated with a new set of successful direct anti-viral agents, potential for virologic breakthrough or relapse by immune escape variants remains. Additionally, many HCV+ patients have HCV-associated disease, including hepatocellular carcinoma (HCC), which does not respond to these novel drugs. Further exploration of other approaches to address HCV infection and its associated disease are highly warranted. Here, we demonstrate the therapeutic potential of PBL-derived T cells genetically engineered with a high-affinity, HLA-A2-restricted, HCV NS3:1406-1415-reactive TCR. HCV1406 TCR-transduced T cells can recognize naturally processed antigen and elicit CD8-independent recognition of both peptide-loaded targets and HCV+ human HCC cell lines. Furthermore, these cells can mediate regression of established HCV+ HCC in vivo. Our results suggest that HCV TCR-engineered antigen-reactive T cells may be a plausible immunotherapy option to treat HCV-associated malignancies, such as HCC.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.