Anomalies in the Third Derivatives of Gibbs Energy and Their Temperature Dependence in Aqueous 2-Butoxyethanol and Glycerol: On the so Called Koga Lines
详细信息    查看全文
  • 作者:Koh Yoshida (1)
    Akira Inaba (1)
    Yoshikata Koga (2)
  • 关键词:Third derivatives of G ; Anomalies in third derivatives ; Temperature dependence of the loci of anomalies ; Aqueous 2 ; butoxyethanol and glycerol ; The universal temperature of anomaly in infinite dilution ; Cite ; correlated hydrogen bond percolation model of H2O
  • 刊名:Journal of Solution Chemistry
  • 出版年:2014
  • 出版时间:April 2014
  • 年:2014
  • 卷:43
  • 期:4
  • 页码:663-674
  • 全文大小:
  • 参考文献:1. Koga, Y.: Solution thermodynamics and its application to aqueous solutions: a differential approach. Chapter V, pp. 89-50. Elsevier B.V., Amsterdam (2007)
    2. Koga, Y.: Solution thermodynamics and its application to aqueous solutions: a differential approach. Chapter VI, pp. 151-74. Elsevier B.V., Amsterdam (2007)
    3. Koga, Y.: Mixing schemes in aqueous solutions of nonelectrolytes: a thermodynamic approach. J. Phys. Chem. 100, 5172-181 (1996) CrossRef
    4. Koga, Y.: Mixing schemes in binary aqueous solutions of non-electrolytes. Netsu Sokutei 30, 54-5 (2003). Available in a pdf file on request to the author, koga@chem.ubc.ca
    5. Koga, Y., Siu, W.W.Y., Wong, T.Y.H.: Transition of short- to medium-range order in aqueous solution of 2-butoxyethanol. J. Phys. Chem. 94, 3879-881 (1990) CrossRef
    6. Tanaka, S.H., Yoshihara, H.I., Ho, A.W.-C., Lau, F.W., Westh, P., Koga, Y.: Excess partial molar enthalpies of alkane-mono-ols in aqueous solutions. Can. J. Chem. 74, 713-21 (1996) CrossRef
    7. Koga, Y., Nishikawa, K., Westh, P.: “Icebergs-or no “icebergs-in aqueous alcohols?: composition-dependent mixing schemes. J. Phys. Chem. A 108, 3873-877 (2004) CrossRef
    8. Davies, J.V., Lau, F.W., Le, L.T.N., Lai, J.T.W., Koga, Y.: Thermal expansivities of aqueous solutions of 2-butoxyethanol in the water-rich region: transition of mixing scheme. Can. J. Chem. 70, 2659-663 (1992) CrossRef
    9. Westh, P., Hvidt, A., Koga, Y.: Transition of the mixing scheme in the water-rich region of aqueous 2-butoxyethanol: heat capacities and their temperature derivatives. Chem. Phys. Lett. 217, 245-48 (1994) CrossRef
    10. Koga, Y.: Fluctuations in aqueous methanol, ethanol, and propan-1-ol: amplitude and wavelength of fluctuation. Can. J. Chem. 77, 2039-045 (1999) CrossRef
    11. Koga, Y., Westh, P., Inaba, A., Sou, K., Tozaki, K.: Experimental determination of third derivative of the Gibbs free energy, / G II: differential pressure perturbation calorimetry. J. Solution Chem. 39(431-40), 589-90 (2010) CrossRef
    12. DeVisser, C., Perron, G., Desnoyers, J.E.: The heat capacities, volumes, and expansibilitied of tert-butyl alcohol-water mixtures from 6 to 65?°C. Can. J. Chem. 55, 856-62 (1977) CrossRef
    13. Sakurai, M.: Partial molar volumes in aqueous mixtures of nonelectrolytes. I. / t-butyl alcohol. Bull. Chem. Soc. Jpn. 60, 1- (1987) CrossRef
    14. Nikolova, P.V., Duff, S.J.B., Westh, P., Haynes, C.A., Kasahara, Y., Nishikawa, K., Koga, Y.: A thermodynamic study of aqueous acetonitrile: excess chemical potentials, partial molar enthalpies, entropies and volumes, and fluctuations. Can. J. Chem. 78, 1553-560 (2000) CrossRef
    15. Koga, Y., Westh, P., Moriya, Y., Kawasaki, K., Atake, T.: High temperature end of the so-called “Koga Line- anomalies in temperature derivatives of heat capacities. J. Phys. Chem. B. 113, 5885-890 (2009) CrossRef
    16. Koga, Y.: Solution thermodynamics and its application to aqueous solutions: a differential approach, pp. 102-03. Elsevier B.V, Amsterdam (2007)
    17. Yoshida, K., Baluja, S., Inaba, A., Tozaki, K., Koga, Y.: Experimental determination of a third derivative of / G (III): differential pressure perturbation calorimetry (II). J. Solution Chem. 40, 1271-278 (2011) CrossRef
    18. Koga, Y.: Vapor pressures of aqueous 2-butoxyethanol solutions at 25?°C: transition in mixing schemes. J. Phys. Chem. 95, 4119-126 (1991) CrossRef
    19. To, E.C.H., Davies, J.V., Tucker, M., Westh, P., Trandum, C., Suh, K.S.H., Koga, Y.: Excess chemical potentials, excess partial molar enthalpies, entropies, volumes, and isobaric thermal expansivities of aqueous glycerol at 25?°C. J. Solution Chem. 28, 1137-157 (1999) CrossRef
    20. Parsons, M.T., Westh, P., Davies, J.V., Trandum, C., To, E.C.H., Chiang, W.M., Yee, E.G.M., Koga, Y.: A thermodynamic study of 1-propanol–glycerol–H2O at 25?°C: effect of glycerol on molecular organization of H2O. J. Solution Chem. 30, 1007-028 (2001) CrossRef
    21. Yoshida, K., Baluja, S., Inaba, A., Koga, Y.: Acceleration of the effect of solute on the entropy–volume cross fluctuation density in aqueous 2-butoxyethanol, 1-propanol, and glycerol: the fourth derivative of Gibbs energy. J. Chem. Phys. 134, 214502(1-) (2011) CrossRef
    22. Stanley, H.E., Teixeira, J.: Interpretation of the unusual behavior of H2O and D2O at low temperatures: tests of a percolation model. J. Chem. Phys. 73, 3404-422 (1980) CrossRef
    23. Parsonage, N.G., Stavely, L.A.K.: Disorder in crystals, p. 84. Clarendon Press, Oxford (1978)
    24. Zhong, Y., Patel, S.: Nonadditive empirical force fields for short-chain linear alcohols: methanol to butanol. Hydration free energetics and Kirkwood–Buff analysis using equilibration models. J. Phys. Chem. B. 114, 11076-1092 (2010) CrossRef
    25. Underwood, R., Tomlinson-Phillips, J., Ben-Amotz, D.: Are long-chain alkanes hydrophilic? J. Phys. Chem. B. 114, 8646-651 (2010) CrossRef
    26. Lumry, R., Rajender, S.: Enthalpy–entropy compensation phenomena in water solutions of proteins and small molecules: a ubiquitous properly of water. Biopolymers 9, 1125-227 (1970) CrossRef
    27. Lumry, R.: Uses of enthalpy–entropy compensation in protein research. Biophys. Chem. 105, 545-57 (2003) CrossRef
    28. Starikov, E.B., Norden, B.: Entropy–enthalpy compensation as a fundamental concept and analysis tool for systematical experimental data. Chem. Phys. Lett. 538, 118-20 (2012) CrossRef
    29. Starikov, E.B.: Valid entropy–enthalpy compensation: fine mechanisms at microscopic level. Chem. Phys. Lett. 564, 88-2 (2013) CrossRef
    30. Gallagher, K.R., Sharp, K.A.: A new angle on heat capacity changes in hydrophobic solvation. J. Am. Chem. Soc. 125, 9853-860 (2003) CrossRef
    31. Sharp, K.A., Maden, B.: Hydrophobic effect, water structure, and heat capacity changes. J. Phys. Chem. B. 101, 4343-348 (1997) CrossRef
    32. Koga, Y., Miyazaki, Y., Nagano, Y., Inaba, A.: Mixing schemes in a urea–H2O system: a differential approach in solution thermodynamics. J. Phys. Chem. B. 112, 11341-1346 (2008) CrossRef
    33. Koga, Y.: Solution thermodynamics and its application to aqueous solutions: a differential approach. Chapter VII, pp. 175-03. Elsevier B.V., Amsterdam (2007)
    34. Siu, W.W.Y., Wong, T.Y.H., Chao, L.C.F., Koga, Y.: Excess partial molar enthalpies in the water-rich region of the iso-butyric acid–water system. Can. J. Chem. 69, 1065-069 (1991) CrossRef
    35. Parsons, M.T., Lau, F.W., Yee, E.G.M., Koga, Y.: Excess chemical potentials and partial molar enthalpies in aqueous 1, 2- and 1, 3-propanediols at 25?°C. J. Solution Chem. 32, 137-53 (2003) CrossRef
    36. Lai, J.T.W., Lau, F.W., Robb, D., Westh, P., Nielsen, G., Trandum, C., Hvidt, A., Koga, Y.: Excess partial molar enthalpies, entropies, Gibbs energies, and volumes in aqueous dimethylsulfoxide. J. Solution Chem. 24, 89-02 (1995) CrossRef
    37. Koga, Y., Kasahara, Y., Yoshino, K., Nishikawa, K.: Mixing schemes for aqueous dimethyl sulfoxide: support by X-ray diffraction data. J. Solution Chem. 30, 885-93 (2001) CrossRef
    38. Morita, T., Westh, P., Nishikawa, K., Koga, Y.: Effects of ethanol and dimethylsulfoxide on the molecular organization of H2O as probed by 1-propanol. J. Phys. Chem. B. 116, 7328-333 (2012) CrossRef
    39. Frank, H.S., Evans, M.W.: Free volume and entropy in condensed systems III. Entropy in binary liquid mixtures; partial molal entropy in dilute solutions; structure and thermodynamics in aqueous electrolytes. J. Chem. Phys. 13, 507-32 (1945) CrossRef
    40. Bakulin, A.A., Liang, C., La Cour Jensen, T., Wirasma, D.A., Bakker, H.L., Pshenikov, M.S.: Hydrophobic solvation: a 2D IR spectroscopic inquest. Acc. Chem. Res. 42, 1229-238 (2009) CrossRef
    41. Finney, J.L., Soper, A.K.: Solvent structure and perturbations in solutions of chemical and biological importance. Chem. Soc. Rev. 23, 1-0 (1994) CrossRef
    42. Rascheke, T.M., Levitt, M.: Nonpolar solutes enhance water structure within hydration shells while reducing interactions between them. Proc. Nat. Acad. Sci. USA 102, 6777-782 (2005) CrossRef
    43. Mateus, M.P.S., Galamba, N.: Costa Cabral, B.J.: Structure and electronic properties of a benzene–water solution. J. Chem. Phys. 136, 014507(1-2) (2012) CrossRef
    44. Galamba, N.: Water’s structure around hydrophobic solutes and the iceberg model. J. Phys. Chem. B. 117, 2153-159 (2013) CrossRef
  • 作者单位:Koh Yoshida (1)
    Akira Inaba (1)
    Yoshikata Koga (2)

    1. Research Center for Structural Thermodynamics, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
    2. Department of Chemistry, The University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
  • ISSN:1572-8927
文摘
By using a home-made differential pressure perturbation calorimeter, we directly determined the partial molar entropy-volume cross fluctuation density of solute B, SV δ Β, for aqueous solutions of 2-butoxyethanol (BE) and glycerol (Gly). SV δ Β is one of the third derivatives of the Gibbs energy, G, and shows anomalous behavior, the mole fraction dependence of which depends on the nature of the solute. The hydrophobic BE shows a peak-type anomaly and the hydrophilic Gly a more subtle bend-type one in their mole fraction dependences of SV δ Β. The peak top for the former and the break point for the latter are regarded as singular. They, together with those of other third derivative quantities, form a single curve as a function of temperature for a given solute. We call the curve the “Koga Line- It approaches to about what appears to be a universal temperature, about 70-0?°C, when extrapolated to the infinite dilution. This temperature seems to be independent of the class and the individual identity of solute. This hints that even for pure H2O there is a subtle change in the property at about 70-0?°C. We speculate this is related with the change in the bond-percolation nature of the hydrogen bond network of H2O, following the site-correlated percolation model of H2O advanced by Stanley et al.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.