Self-built Supercritical CO2 Anti-solvent Unit Design, Construction and Operation using Carbamazepine
详细信息    查看全文
  • 作者:Dan Meng (1)
    James Falconer (2)
    Karen Krauel-Goellner (3)
    John J. J. J. Chen (1)
    Mohammed Farid (1)
    Raid G. Alany (2)
  • 关键词:anti ; solvent ; carbamazepine ; in vitro dissolution ; particle size reduction ; polymorphism ; solid ; state ; supercritical CO2
  • 刊名:AAPS PharmSciTech
  • 出版年:2008
  • 出版时间:September 2008
  • 年:2008
  • 卷:9
  • 期:3
  • 页码:944-952
  • 全文大小:272KB
  • 参考文献:1. A. J. Hickey, and D. Ganderton. Pharmaceutical process engineering, Marcel Dekker, New York, 2001.
    2. M. E. Aulton. Pharmaceutics: the science of dosage form design, 2nd ed., Churchhill Livingstone, New York, 2002.
    3. K. Okuyama, and I. W. Lenggoro. Preparation of nanoparticles via spray route. / Chem. Eng. Sci. g class="a-plus-plus">58g>(3-):537-47 (2003). g/10.1016/S0009-2509(02)00578-X">CrossRef
    4. E. J. Beckman. Supercritical and near-critical CO2 in green chemical synthesis and processing. / J. Supercrit. Fluids. g class="a-plus-plus">28g>:121-91 (2003). g/10.1016/S0896-8446(03)00029-9">CrossRef
    5. E. L. V. Goetheer, M. A. G. Vorstman, and J. T. F. Keurentjes. Opportunities for process intensification using reverse micelles in liquid and supercritical carbon dioxide. / Chem. Eng. Sci. g class="a-plus-plus">54g>(10):1589-596 (1999). g/10.1016/S0009-2509(99)00043-3">CrossRef
    6. B. W. Wenclawiak, A. Wolf, and S. Wilnewski. Extractability of As-chelates and solubility of different Rh, Pd-chelates in supercritical fluid CO2. In GHBrunner (ed.), / Supercritical Fluids as Solvents and Reaction Media, Elsevier, Amsterdam, 2007, pp. 323-40.
    7. Y. P. Sun, H. W. Rollins, B. Jayasundera, M. J. Meziani, and C. E. Bunker. In Y. P. Sun (ed.), / Supercritical fluid technology in materials science and engineering: synthesis, properties, and applications, Marcel Dekker, New York, 2002, p. 491.
    8. T. J. Young, S. Mawson, and K. P. Johnston. Rapid expansion from supercritical to aqueous solution to produce submicron suspensions of water-insoluble drugs. / Biotechnol. Prog. g class="a-plus-plus">16g>:402-07 (2000). g/10.1021/bp000032q">CrossRef
    9. N. Jovanovic, A. Bouchard, G. W. Hofland, G. J. Witkamp, D. J. A. Crommelin, and W. Jiskoot. Stabilization of proteins in dry powder formulations using supercritical fluid technology. / Pharm. Res. g class="a-plus-plus">21g>(11):1955-969 (2004). g/10.1023/B:PHAM.0000048185.09483.e7">CrossRef
    10. S. Palakodaty, and P. York. Phase behavioral effects on particle formation processes using supercritical fluids. / Pharm. Res. g class="a-plus-plus">16g>(7):976-85 (1999). g/10.1023/A:1011957512347">CrossRef
    11. T. A. Ranjit, and R. B. Gupta. Formation of phenytoin nanoparticles using RESS-SC process. / Int. J. Pharm. g class="a-plus-plus">308g>:190-99 (2006). g/10.1016/j.ijpharm.2005.11.005">CrossRef
    12. P. M. Gosselin, R. Thibert, M. Preda, and J. N. McMullen. Polymorphic properties of micronized carbamazepine produced by RESS. / Int. J. Pharm. g class="a-plus-plus">252g>:225-33 (2003). g/10.1016/S0378-5173(02)00649-X">CrossRef
    13. R. Bettini, L. Bonassi, V. Castoro, Rossi, L. Zema, A. Gazzaniga, and F. Giordano. Solubility and conversion of carbamazepine polymorphs in supercritical carbon dioxide. / Eur. J. Pharm. Sci. g class="a-plus-plus">13g>(3):281-86 (2001). g/10.1016/S0928-0987(01)00115-4">CrossRef
    14. M. Moneghini, I. Kikic, D. Voinovich, B. Perissutti, P. Alessi, A. Cortesi, F. Princivalle, and D. Solinas. Study of the solid state of carbamazepine after processing with gas anti-solvent technique. / Eur. J. Pharm. Biopharm. g class="a-plus-plus">56g>(2):281-89 (2003). g/10.1016/S0939-6411(03)00092-4">CrossRef
    15. J. O. Werling, and P. G. Debenedetti. Numerical modeling of mass transfer in the supercritical antisolvent process. / J. Supercrit. Fluids. g class="a-plus-plus">16g>(2):167-81 (1999). g/10.1016/S0896-8446(99)00027-3">CrossRef
    16. S. Budavari, M. J. O’Neil, A. Smith, P. E. Heckelman, and J. F. Kinneary. The Merck index: an encyclopedia of chemicals, drugs and biologicals, 12th ed., Chapman & Hall, London, 1996.
    17. K. Parfitt. Martindale: the complete drug reference, 32rd ed., Pharmaceutical, London, 1999.
    18. FDA. Waiver of / in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms based on a biopharmaceutics classification system, 2007. gov/cder/guidance/3618fnl.pdf" class="a-plus-plus">http://www.fda.gov/cder/guidance/3618fnl.pdf (accessed 18/11/07).
    19. M. Moneghini, I. Kikic, D. Voinovich, B. Perissutti, and J. Filipovic-Grcic. Processing of carbamazepine-PEG 4000 solid dispersions with supercritical carbon dioxide: preparation, characterisation, and / in vitro dissolution. / Int. J. Pharm. g class="a-plus-plus">222g>(1):129-38 (2001). g/10.1016/S0378-5173(01)00711-6">CrossRef
    20. A. D. Edwards, B. Y. Shekunov, A. Kordikowski, R. T. Forbes, and P. York. Crystallization of pure anhydrous polymorphs of carbamazepine by solution enhanced dispersion with supercritical fluids (SEDS?. / J. Pharm. Sci. g class="a-plus-plus">90g>(8):1115-124 (2001). g/10.1002/jps.1065">CrossRef
    21. P. A. Kikic, A. Cortesi, F. Eva, A. Fogar, M. moneghini, B. Perissutti, and D. Voinovich. Supercritical anti-solvent precipitation processes: different ways for improving the performance of drugs. In A. Bertucco (ed.), / Chemical Engineering Transactions, Vol. 2, AIDIC, Milano, 2002, pp. 821-26.
    22. J. C. De La Fuente, C. J. Peters, and A. J. De Swaan. Volume expansion in relation to the gas-antisolvent process. / J. Supercrit. Fluids. g class="a-plus-plus">17g>(1):13-3 (2000). g/10.1016/S0896-8446(99)00045-5">CrossRef
    23. J. C. De La Fuente, A. Shariati, and C. J. Peters. On the selection of optimum thermodynamic conditions for the GAS process. / J. Supercrit. Fluids. g class="a-plus-plus">32g>(1)-:55-1 (2004).
    24. M. Perrut, J. Jung, and F. Leboeuf. Enhancement of dissolution rate of poorly-soluble active ingredients by supercritical fluid processes Part I: Micronization of neat particles. / Int. J. Pharm. g class="a-plus-plus">288g>(1):3-0 (2005). g/10.1016/j.ijpharm.2004.09.007">CrossRef
    25. A. Nokhodchi, N. Bolourtchian, and R. Dinarvand. Dissolution and mechanical behaviors of recrystallized carbamazepine from alcohol solution in the presence of additives. / J. Cryst. Growth. g class="a-plus-plus">274g>(3-):573-84 (2005). g/10.1016/j.jcrysgro.2004.10.158">CrossRef
    26. L. E. O’Brien, P. Timmins, A. C. Williams, and P. York. Use of / in situ FT-Raman spectroscopy to study the kinetics of the transformation of carbamazepine polymorphs. / J. Pharm. Biomed. Anal. g class="a-plus-plus">36g>(2):335-40 (2004). g/10.1016/j.jpba.2004.06.024">CrossRef
    27. C. McGregor, M. H. Saunders, G. Buckton, and R. D. Saklatvala. The use of high-speed differential scanning calorimetry (Hyper-DSC?) to study the thermal properties of carbamazepine polymorphs. / Thermochim. Acta. g class="a-plus-plus">417g>(2):231-37 (2004). g/10.1016/j.tca.2003.09.031">CrossRef
    28. A. L. Grzesiak, M. Lang, K. Kim, and A. J. Matzger. Comparison of the four anhydrous polymorphs of carbamazepine and the crystal structure of form I. / J. Pharm. Sci. g class="a-plus-plus">92g>(11):2260-271 (2003). g/10.1002/jps.10455">CrossRef
    29. B. Subramaniam, R. A. Rajewski, and K. Snavely. Pharmaceutical processing with supercritical carbon dioxide. / J. Pharm. Sci. g class="a-plus-plus">86g>(8):885-90 (1997). g/10.1021/js9700661">CrossRef
    30. R. B. Gupta. Supercritical fluid technology for particle engineering. In U. B. Kompella, and R. B. Gupta (eds.), / Nanoparticle technology for drug delivery, Vol. 159, Taylor and Francis, New York, 2006, pp. 53-4.
    31. H. Ohde, J. M. Rodruguez, X. R. Ye, and C. M. Wai. Synthesizing silver halide nanoparticles in supercritical carbon dioxide utilizing a water-in-CO2 microemulsion. / Chem. Comm. g class="a-plus-plus">18g>:2353-354 (2000). g/10.1039/b005924m">CrossRef
    32. S. Sethia, and E. Squillante. Solid dispersion of carbamazepine in PVP K30 by conventional solvent evaporation and supercritical methods. / Int. J. Pharm. g class="a-plus-plus">272g>:1-0 (2004). g/10.1016/j.ijpharm.2003.11.025">CrossRef
    33. B. C. Hancock, and M. Parksi. What is the true solubility advantage for amorphous pharmaceuticals? / Pharm. Res. g class="a-plus-plus">17g>(4):397-04 (2000). g/10.1023/A:1007516718048">CrossRef
  • 作者单位:Dan Meng (1)
    James Falconer (2)
    Karen Krauel-Goellner (3)
    John J. J. J. Chen (1)
    Mohammed Farid (1)
    Raid G. Alany (2)

    1. Department of Chemical and Material Engineering, Faculty of Engineering, University of Auckland, Private Bag 92019, Auckland, New Zealand
    2. Drug Delivery Research Unit (2DRU), School of Pharmacy, University of Auckland, Private Bag 92019, Auckland, New Zealand
    3. IFNHH, Massey University Wellington, Private Box 756, Wellington, New Zealand
文摘
The purpose of this study was to design and build a supercritical CO2 anti-solvent (SAS) unit and use it to produce microparticles of the class II drug carbamazepine. The operation conditions of the constructed unit affected the carbamazepine yield. Optimal conditions were: organic solution flow rate of 0.15?mL/min, CO2 flow rate of 7.5?mL/min, pressure of 4,200?psi, over 3,000?s and at 33°C. The drug solid-state characteristics, morphology and size distribution were examined before and after processing using X-ray powder diffraction and differential scanning calorimetry, scanning electron microscopy and laser diffraction particle size analysis, respectively. The in vitro dissolution of the treated particles was investigated and compared to that of untreated particles. Results revealed a change in the crystalline structure of carbamazepine with different polymorphs co-existing under various operation conditions. Scanning electron micrographs showed a change in the crystalline habit from the prismatic into bundled whiskers, fibers and filaments. The volume weighted diameter was reduced from 209 to 29?μm. Furthermore, the SAS CO2 process yielded particles with significantly improved in vitro dissolution. Further research is needed to optimize the operation conditions of the self-built unit to maximize the production yield and produce a uniform polymorphic form of carbamazepine.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.