Short-term biochemical ill effects of insect growth regulator (IGR) pesticides in Cyphoderus javanus Borner (Collembola: Insecta) as potential biomarkers of soil pollution
详细信息    查看全文
  • 作者:Ipsita Saha ; V. C. Joy
  • 关键词:Insect growth regulators ; Soil pollution ; Collembola ; Biochemical impact ; Biomarker
  • 刊名:Environmental Monitoring and Assessment
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:188
  • 期:2
  • 全文大小:426 KB
  • 参考文献:Al-shannaf, H. M., Mead, H. M., & Hassan Sabry, A. K. (2012). Toxic and Biochemical Effects of Some Bioinsecticides and Igrs on American Bollworm, Helicoverpa armigera (hüb.) (noctuidae: lepidoptera) in Cotton Fields. Journal of Biofertilizers and Biopesticides, 3, 118.
    Anson, M. L. (1938). General Physiology, 22, 79.
    Anwar, E. M., & Abd El-Mageed, A. E. M. (2005). Toxicity impacts of certain insect growth regulators on some biochemical activities of the cotton leafworm. Egyptian Journal of Agricultural Research, 83(3), 915–935.
    Belinato, T. A., Martins, A. J., Lima, J. B. P., & Valle, D. (2013). Effect of triflumuron, a chitin synthesis inhibitor, on Aedes aegypti, Aedes albopictus and Culex quinquefasciatus under laboratory conditions. Parasites & Vectors, 6, 83.CrossRef
    Bernfeld, P. (1955). Amylase α and β. In S. P. Colowick & N. O. Kaplon (Eds.), Methods in Enzymology (Vol. 1, p. 147). New York: Academic Press.
    Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.CrossRef
    Campiche, S., Becker-van Slooten, K., Ridreau, C., & Tarradellas, J. (2006). Effects of insect growth regulators on the nontarget soil arthropod Folsomia candida (Collembola). Ecotoxicology and Environmental Safety, 63(2), 216–225.CrossRef
    Chakravorty, P. P., Haque, A., Sanyal, S., & Dasgupta, R. (2015). Effect of herbicides on Cyphoderus javanus (Hexapoda: Collembola) under laboratory conditions. Journal of Entomology and Zoology Studies, 3(1), 220–223.
    Choi, W. I., Ryoo, M. I., & Kim, J. (2002). Biology of Paronychiurus kimi (Collembola: Onychiuridae) under the influence of temperature. Pedobiologia, 46, 548–557.CrossRef
    Das, S., & Joy, V. C. (2009). Chemical quality impacts of tropical forest tree leaf litters on the growth and fecundity of soil Collembola. European Journal of Soil Biology, 45, 448–454.CrossRef
    Eijsackers, H. (1980). Assessment of toxic effects of the herbicide 2,4,5-T on the soil fauna by laboratory tests. In D. L. Dindal (Ed.), Soil biology as related to land use practices (pp. 427–440). Syracuse: Proceedings of the VII International Soil Zoology Colloquium of the International Society of Soil Science.
    El-Aasar, A. M., El-Sheikh, T. A. A., Rafea, H. S., & Ali, S. H. (2013). Biological and biochemical effects of Bacillus thuringiensis, Serratia marcescens and teflubenzuron and their sequential combined effects on cotton leafworm, Spodoptera littoralis (Boisd.). Egyptian Academic Journal of Biological Science, 5(1), 1–13.
    El-Mahasen, A. M. M., Assar, A. A., Khalil, M. E., & Mahmoud, S. H. (2010). Biological effects of some insect growth regulators on the house fly, musca domestica (diptera: muscidae). Egyptian Academic Journal of Biological Science, 3(2), 95–105.
    Floch, J. M. S., Less, M., & Stanely, G. H. S. (1957). A simple method for the isolation and purification of total lipids from animal tissue. Journal of Biological Chemistry, 226, 497–500.
    Haque, A., Dasgupta, R., & Chakravorty, P. P. (2011). Effect of two herbicides on Xenylla welchi (Hexapoda: Collembola) under laboratory conditions. Bulletin of Environmental Contamination and Toxicology, 86, 583–586.CrossRef
    Hodgson, E. W., Pitts-Singer, T. L., & Barbour, J. D. (2010). Effects of the insect growth regulator, novaluron on immature alfalfa leafcutting bees, Megachile rotundata. Journal of Insect Science, 11, 43.
    Hopkin, S. (1997). Biology of the springtails (Insects: Collembola) (p. 330). Oxford: Oxford University Press.
    I.S.O. (1999). Soil quality inhibition of reproduction of Collembola (Folsomia candida) by soil pollutants. International Standards Organisation, Report no. ISO 11267 (E) (pp.16). Geneva.
    Ijumba, J. N., Mtana, R. R., & Suya, T. B. (2010). Bio-efficacy of novaluron, a chitin synthesis inhibitor against larval stages of Culex quinquefasciatus and Anopheles gambiae SensuLato. European Journal of Scientific Research, 47(3), 484–493.
    Joy, V. C., & Chakravorty, P. P. (1991). Impact of insecticides on non target microarthropod fauna in agricultural soil. Ecotoxicology and Environmental Safety, 22, 8–16. Academic Press.CrossRef
    Khan, I., & Qamar, A. (2012). Andalin, an insect growth regulator, as reproductive inhibitor for the red cotton stainer, Dysdercus koenigii (F.) (Hemiptera: Pyrrhocoridae). Academic Journal of Entomology, 5(2), 113–121.
    Khatter, N. A., & Abuldahb, F. F. (2011). Combined effect of three insect growth regulators on the digestive enzymatic profiles of Callosobruchus Maculatus (Coleoptera: Bruchidae). Journal of the Egyptian Society of Parasitology, 41(3), 757–766.
    Koul, O., Shanka, J. S., & Kapil, R. S. (1996). The effect of neem allelochemicals on nutritional physiology of larval Spodoptera litura. Entomologia Experimentalis et Applicata, 79, 43–50.CrossRef
    Lebrun, P. H. (1980). A preliminary study of the use of some soil mites in bioassays for pesticide residue detection. In D. L. Dindal (Ed.), Soil biology as related to land use practices. Proceeding VIIth International Soil Zoology Colloquist (pp. 42–55). Syracuse: International Society of Soil Science.
    Maria, V. L., Ribeiro, M. J., & Amorim, M. J. B. (2014). Oxidative stress biomarkers and metallothionein in Folsomia candida—responses to Cu and Cd. Environmental Research, 133, 164–169.CrossRef
    Moore, S., & Stein, W. H. (1948). Photometric ninhydrin method for use in the chromatography of amino acids. Journal of Biological Chemistry, 176, 367–388.
    Moreno, P. G., & Nakano, O. (2002). Activity of buprofezin on the green leafhopper Empoasca kraemeri (Ross & Moore) (Hemiptera, Cicadellidae) under laboratory conditions. Scientia Agricola, 59, 475–481.CrossRef
    Paranagama, P. A., Kodikara, K. A. B. C. H., Nishantha, H. M. I., & Mubarak, A. M. (2001). Effect of azadirachtin on growth and the activity of midgut enzymes of the cockroach Periplaneta americana. Journal of the National Science Foundation of Sri Lanka, 29, 69–79.
    Rachid, R., Djebar-Berrebbah, H., & Djebar, M. R. (2008). Growth, chitin and respiratory metabolism of Tetrahymena pyriformis exposed to the insecticide Novaluron. American-Eurasian Journal of Agriculture & Environmental Science, 3(6), 873–881.
    Rajasekar, P., & Jebanesan, A. (2012). Efficacy of IGRs compound Novaluron and Buprofezin against Culex quinquefasciatus mosquito larvae and pupal control in pools, drains and tanks. International Journal of Research in Biological Sciences, 2(1), 45–47.
    Sadasivam, S., & Manickam, A. (1992). Biochemical methods for agricultural sciences. New Delhi: Wiley Eastern Ltd.
    Saha, I., & Joy, V. C. (2014). Potential ill effects of IGR pesticides on life-history parameters in ecologically important soil collembola Cyphoderus javanus Borner. International Journal of Science Environment and Technology, 3, 365–373.
    Sahana, A., & Joy, V. C. (2014). Temporal changes of Collembola population and alterations of life history parameters and acetylcholinesterase and superoxide dismutase activities in Cyphoderus javanus (Collembola) as biomarkers of fly ash pollution in lateritic soil. Toxicology and Environmental Chemistry, 95, 1359–1368.CrossRef
    Senthil Nathan, S., & Kalaivani, K. (2005). Efficacy of nucleopolyhedrovirus (NPV) and azadirachtin on Spodoptera litura Fabricius (Lepidoptera: Noctuidae). Biological Control, 34, 93–98.CrossRef
    Shanthy, B., Chockalingam, S., & Muthukrishnan, J. (1995). Developmental changes elicited by hydroprene and methoprene in Triboleum castanium Herbst. Proceeding of the Indian National Science Academy, B61(4), 291–298.
    Talikoti, L.S., Sridevi, D., & Ratnasudhakar, T. (2012). Relative toxicity of insect growth regulators against tobacco caterpillar, Spodoptera litura (Fabricius). Journal of Entomological Research, 36(1), 31–34.
    Tunaz, H., & Uygun, N. (2004). Insect growth regulators for insect pest control. Turkish Journal of Agriculture and Forestry, 28, 377–387.
    Umbreit, W. N., Burris, R. H., & Stauffer, J. F. (1958). In Monometric Techniques (3rd ed., pp. 272–279). Minneapolis: Burgess Publishing Co.
    Van Straalen, N. M. (1998). Evaluation of bioindicator systems derived from soil arthropod communities. Applied Soil Ecology, 9, 429–437.CrossRef
  • 作者单位:Ipsita Saha (1)
    V. C. Joy (1)

    1. Soil Ecology Laboratory, Department of Zoology (CAS), Visva-Bharati University, Santiniketan, 731235, West Bengal, India
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
    Ecology
    Atmospheric Protection, Air Quality Control and Air Pollution
    Environmental Management
  • 出版者:Springer Netherlands
  • ISSN:1573-2959
文摘
The insect growth regulator (IGR) chemicals are considered as safe alternatives to synthetic organic pesticides, but only scant information are available on their possible impact on non-target and ecologically important soil insect fauna of croplands. Previous studies by the authors showed that recommended agricultural doses of IGRs buprofezin (Applaud 25SC at 250 g a.i. ha−1), flubendiamide (Takumi 20WG at 50 g a.i. ha−1) and novaluron (Rimon 10EC at 100 g a.i. ha−1) produced less mortality of adults of a non-target soil insect Cyphoderus javanus Borner (Collembola) but decreased major life history parameters namely moulting, fecundity and egg hatching success. This detritivorous microarthropod is very sensitive to soil characteristics and is ecologically relevant to the tropical soils. Present microcosm study showed strong biochemical impact of the above doses of IGRs on tissue nutrient levels and digestive enzyme activities in C. javanus within 7 days of exposure to treated sandy loam soil. The levels of tissue proteins, carbohydrates, lipids and free amino acids declined significantly and persistently in the specimens reared in IGR-treated soils than in the specimens of untreated soil. Similarly, α-amylase, cellulase and protease activities declined significantly in the specimens of IGR-treated soil. These nutritional scarcities would reduce metabolism, growth and reproduction in the affected insects. Therefore, the observed biochemical responses, especially the levels of tissue proteins, carbohydrates and α-amylase activity in C. javanus are early warning indices and potential biomarkers of soil pollution in croplands.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.