Ball Milling of Amaranth Starch-Enriched Fraction. Changes on Particle Size, Starch Crystallinity, and Functionality as a Function of Milling Energy
详细信息    查看全文
  • 作者:Diego F. Roa (1) (3)
    Patricio R. Santagapita (1) (2) (3)
    M. Pilar Buera (1) (2) (3)
    Marcela P. Tolaba (1) (4)
  • 关键词:Planetary ball milling ; Amaranth starch ; Energy function ; Crystallinity ; Technological and physical properties ; FT ; IR
  • 刊名:Food and Bioprocess Technology
  • 出版年:2014
  • 出版时间:September 2014
  • 年:2014
  • 卷:7
  • 期:9
  • 页码:2723-2731
  • 全文大小:399 KB
  • 参考文献:1. Association of Official Analytical Chemists. (2000). / AOAC 925.09. Solids (total) and moisture in flour. Official methods of analysis, 17th ed. Gaithersburg, MD: Association of Official Analytical Chemists.
    2. Avanza, M. V., Puppo, M. C., & A?ón, M. C. (2005). Rheological characterization of amaranth protein gels. / Food Hydrocolloids, 19(5), 889-98. CrossRef
    3. Bressani, R. (1989). The proteins of grain amaranth. / Food Review International, 5, 13-8. CrossRef
    4. Bruckner, S. (2000). Estimation of the background in powder diffraction patterns through a robust smoothing procedure. / Journal of Applied Crystallography, 33, 977-79. CrossRef
    5. Capron, I., Robert, P., Colonna, P., Brogly, M., & Planchot, V. (2007). Starch in rubbery and glassy states by FTIR spectroscopy. / Carbohydrate Polymer, 68, 249-59. CrossRef
    6. Carpinteri, A., & Pugno, N. (2002). A fractal comminution approach to evaluate the drilling energy dissipation. / International Journal for Numerical and Analytical Methods in Geomechanics, 26, 499-13. CrossRef
    7. Chandra, R. P., Bura, R., Mabee, W. E., Berlin, A., Pan, X., & Saddler, J. N. (2007). Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics? / Advances in Biochemical Engineering/Biotechnology, 108, 67-3. CrossRef
    8. Cheetham, N., & Tao, L. (1998). Variation in crystalline type with amylose content in maize starch granules: an X-ray powder diffraction study. / Carbohydrate Polymer, 36, 277-84. CrossRef
    9. Chen, J.-J., Lii, C.-Y., & Lu, S. (2003). Physicochemical and morphological analyses on damaged rice starches. / Journal of Food and Drug Analysis, 11, 283-89.
    10. Chiang, P., & Yeh, A. (2002). Effect of soaking on wet-milling of rice. / Journal of Cereal Science, 35, 85-4. CrossRef
    11. Courtois, F., Faessel, M., & Bonazzi, C. (2010). Assessing breakage and cracks of parboiled rice kernels by image analysis techniques. / Food Control, 21, 567-72. CrossRef
    12. Devi, F., Fibrianto, K., Torley, J., & Bhandari, B. (2009). Physical properties of cryomilled rice starch. / Journal of Cereal Science, 49, 278-84. CrossRef
    13. Fiedorowicz, M., & Para, A. (2006). Structural and molecular properties of dialdehyde starch. / Carbohydrate Polymer, 63, 360-66. CrossRef
    14. Frost, K., Kaminski, D., Kirwan, G., Lascaris, E., & Shanks, R. (2009). Crystallinity and structure of starch using wide angle X-ray scattering. / Carbohydrate Polymer, 78, 543-48. CrossRef
    15. Han, M., Chang, M., & Kim, M. (2007). Changes in physicochemical properties of rice starch processed by ultra-fine pulverization. / Journal of Applied Biological Chemistry, 50, 234-38.
    16. Holmes, J. A. (1957). Contribution to the study of comminution modified form of Kick’s law. / Transactions of the Instititution of Chemical Engineers, 35, 125-41.
    17. Huang, Z., Lu, J., Li, X., & Tong, Z. (2007). Effect of mechanical activation on physico-chemical properties and structure of cassava starch. / Carbohydrate Polymer, 68, 128-35. CrossRef
    18. Hukki, R. T. (1961). Proposal of Solomonic settlement between the theories of von Rittinger, Kick and Bond. / Transactions of the American Institute of Mining, Metallurgical and Petroleum Engineers, 220, 403-08.
    19. Jackson, D. S., Gomez, M. H., Waniska, R. D., & Rooney, L. W. (1990). Effects of single-screw extrusion cooking on starch as measured by aqueous high-performance size-exclusion chromatography. / Cereal Chemistry, 67, 529-32.
    20. Jane, J., Shen, L., Wang, L., & Maninga, C. C. (1992). Preparation and properties of small-particle corn starch. / Cereal Chemistry, 69, 280-83.
    21. Jiménez-Elizondo, N., Sobral, P. J. A., & Menegalli, F.-C. (2009). Development of films based on blends of / Amaranthus cruentus flour and polyvinyl alcohol. / Carbohydrate Polymer, 75, 592-98. CrossRef
    22. Jiugao, Y., Ning, W., & Xiaofei, M. (2005). The effects of citric acid on the properties of thermoplastic starch plasticized by glycerol. / Starch/Staerke, 57, 494-04. CrossRef
    23. Kavesh, S., & Shultz, J. (1969). meaning and measurement of crystallinity in polymers. / Polymer engineering and science, 5, 331-38. CrossRef
    24. Lehmann, J. W. (1996). Case history of grain amaranth as an alternative crop. / Cereal Foods World, 41, 399-11.
    25. Liu, T. Y., Ma, Y., Yu, S. F., Shi, J., & Xue, S. (2011). The effect of ball milling treatment on structure and porosity of maize starch granule. / Innovative Food Science and Emerging Technologies, 12(4), 586-93. CrossRef
    26. Lopez-Rubio, A., Flanagan, M., Shrestha, A., Gidley, M., & Gilbert, E. (2008). Molecular rearrangement of starch during in-vitro digestion: Towards a better understanding of enzyme resistant starch formation. / Biomacromolecules, 9, 1951-958. CrossRef
    27. Martinez-Bustos, F., Lopez-Soto, M., San Martin-Martinez, E., Zazueta-Morales, J., & Velez-Medina, J. (2007). Effects of high energy milling on some functional properties of jicama starch ( / Pachyrrhizus ersus L. Urban) and cassava starch ( / Manihot esculenta Crantz). / Journal of Food Engineering, 78, 1212-220. CrossRef
    28. Morrison, W., & Tester, R. (1994). Properties of damaged starch granules. IV. Composition of ball-milled wheat starches and of fractions obtained on hydration. / Journal of Cereal Science, 20, 69-7. CrossRef
    29. Puncha-arnon, S., & Uttapap, D. (2013). Rice starch vs. rice flour: differences in their properties when modified by heat–moisture treatment. / Carbohydrate Polymer, 91, 85-1. CrossRef
    30. Rhodes, M. (2008). / Introduction to particle technology (pp. 314-18). New York, USA: Wiley. CrossRef
    31. Roa, D. F., Santagapita, P. R., Buera, M. P., & Tolaba, M. P. (2013). Amaranth milling strategies and fraction characterization by FT-IR. / Food and Bioprocess Technology. doi:10.1007/s11947-013-1050-7 .
    32. Sanguanpong, V., Chotineeranat, S., Piyachomkwan, K., Oates, C., Chinachoti, P., & Sriroth, K. (2003). Preparation and structural properties of small-particle cassava starch. / Journal of the Science of Food and Agriculture, 83, 760-68. CrossRef
    33. Savitzky, A., & Golay, M. J. E. (1964). Smoothing and differentiation of data by simplified least squares procedures. / Analytical Chemistry, 36, 1627-639. CrossRef
    34. Sevenou, O., Hill, S.-E., Farhat, I.-A., & Mitchell, J.-R. (2002). Organization of the external region of starch granules as determined by infrared spectroscopy. / International Journal of Biological Macromolecules, 31, 79-5. CrossRef
    35. Shrestha, K., Ng, C., Lopez-Rubio, A., Blazek, J., Gilbert, E., & Gidley, M. (2010). Enzyme resistance and structural organization in extruded high amylose maize starch. / Carbohydrate Polymer, 80(3), 699-10. CrossRef
    36. Silva, D., Couturier, M., Berrin, J., Buleon, A., & Rouau, X. (2011). Effects of grinding processes on enzymatic degradation of wheat straw. / Bioresource Technology, 103, 192-00. CrossRef
    37. Tamaki, S., Hisamatsu, M., Teranishi, K., Adachi, T., & Yamada, T. (1998). Structural change of maize starch granules by ball-mill treatment. / Starch/Staerke, 50, 342-48. CrossRef
    38. Tapia-Blácido D (2006) Edible films based on amaranth flour and starch. PhD thesis. Department of Food Engineering, Campinas, SP, Brazil.
    39. Xie, X., Liu, Q., & Cui, S. W. (2006). Studies on the granular structure of resistant starches (type 4) from normal, high amylose and waxy corn starch citrates. / Food Research International, 39, 332-41. CrossRef
    40. Zhang, Z., Zhao, S., & Xiong, S. (2010). Morphology and physicochemical properties of mechanically activated rice starch. / Carbohydrate Polymer, 79, 341-48. CrossRef
    41. Zobel, H. (1988). Starch crystal transformations and their industrial importance. / Starch/Staerke, 40, 1-. CrossRef
    42. Zuo, J.-Y., Knoerzer, K., Mawson, R., Kentish, S., & Ashokkumar, M. (2009). The pasting properties of sonicated waxy rice starch suspensions. / Ultrasonic Sonochemistry, 16, 462-68. CrossRef
  • 作者单位:Diego F. Roa (1) (3)
    Patricio R. Santagapita (1) (2) (3)
    M. Pilar Buera (1) (2) (3)
    Marcela P. Tolaba (1) (4)

    1. Industry Department, Faculty of Exact and Natural Sciences, University of Buenos Aires (FCEyN-UBA), Buenos Aires, Argentina
    3. National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina
    2. Organic Chemistry Department, Faculty of Exact and Natural Sciences, University of Buenos Aires (FCEyN-UBA), Buenos Aires, Argentina
    4. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160-Ciudad Universitaria, C1428EGA, Ciudad Autónoma de Buenos Aires, Argentina
  • ISSN:1935-5149
文摘
Starch-enriched fractions of amaranth grain were obtained from planetary ball milling and subsequently studied for particle size reduction, hydration properties, and crystallinity loss. Wide-angle X-ray scattering (WAXS) was used to evaluate the crystalline of starch-enriched fractions, using an iterative smoothing algorithm to estimate amorphous background scattering. This methodology was then used to determine initial crystallinity and monitor crystallinity loss during this process. The attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) showed that ball-milling treatment significantly decreased (p--.05) the intensity ratios of the bands at 1,039 and 1,014?cm? corresponding to the crystalline/amorphous part of starch structure. Starch crystallinity degree decreased by ball milling due to starch amorphization during this process. An excellent correlation was found between crystallinity degree obtained by WAXS and ATR-FTIR data for the whole ball-milled-analyzed samples. The energy required for size reduction was satisfactorily explained using a generalized grinding equation. A decrease of span and median diameter (D 50) indicated sample homogenization during ball milling. Water absorption index and water solubility increased with crystallinity loss during process. The flour produced at the higher milling energy (6.52?kJ/g), with a mean size of 68?±-?μm, showed a low crystallinity degree (
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.