Ethanol Attracts Scolytid Beetles to Phytophthora ramorum Cankers on Coast Live Oak
详细信息    查看全文
  • 作者:Rick G. Kelsey (1)
    Maia M. Beh (2)
    David C. Shaw (2)
    Daniel K. Manter (3)
  • 关键词:Quercus agrifolia ; Ambrosia beetles ; Bark beetles ; Deterrents ; (鈭? ; ; Pinene ; 4 ; Allyanisole ; Ethanol ; Phytophthora ramorum ; Sudden oak death
  • 刊名:Journal of Chemical Ecology
  • 出版年:2013
  • 出版时间:April 2013
  • 年:2013
  • 卷:39
  • 期:4
  • 页码:494-506
  • 全文大小:410KB
  • 参考文献:1. Anderson, J. A. 1994. Production of methanol from heat-stressed pepper and corn leaf disks. / J. Am. Soc. Hortic. Sci. 119:468鈥?72.
    2. Borden, J. H., Lindgren, B. S., and Chong, L. 1980. Ethanol and 伪-pinene as synergists for the aggregation pheromones of two / Gnathotrichus species. / Can. J. For. Res. 10:290鈥?92. CrossRef
    3. Brown, A. V. and Brasier, C. M. 2007. Colonization of tree xylem by / Phytophthora ramorum, / P. kernoviae and other / Phytophthora species. / Plant Pathol. 56:227鈥?41. CrossRef
    4. Burke, H. E., Hartman, R. D., and Snyder, T. E. 1922. The lead-cable borer or 鈥渟hort-circuit beetle鈥?in California. USDA, Bulletin No. 1107, Washington D.C.
    5. Byers, J. A. 1992. Attraction of bark beetles, / Tomicus piniperda, / Hylurgops palliates, and / Trypodendron domesticum and other insects to short-chain alcohols and monoterpenes. / J. Chem. Ecol. 18:2385鈥?402. CrossRef
    6. Cojocariu, C., Kreuzwieser, J., and Rennenberg, H. 2004. Correlation of short-chained carbonyls emitted from / Picea abies with physiological and environmental parameters. / New Phytol. 162:717鈥?27. CrossRef
    7. Collins, B. R., Parke, J. L., Lachenbruch, B., and Hansen, E. M. 2009. The effects of / Phytophthora ramorum infection on hydraulic conductivity and tylosis formation in tanoak sapwood. / Can. J. For. Res. 39:1766鈥?776. CrossRef
    8. Coyle, D. R., Booth, D. C., and Wallace, M. S. 2005. Ambrosia beetle (Coleoptera: Scolytidae) species, flight, and attack on living eastern cottonwood trees. / J. Econ. Entomol. 98:2049鈥?057. CrossRef
    9. Davidson, J. M., Wickland, A. C., Patterson, H. A., Falk, K. R., and Rizzo, D. M. 2005. Transmission of / Phytophthora ramorum in mixed-evergreen forest in California. / Phytopathology 95:587鈥?96. CrossRef
    10. Dunn, J. P. and Potter, D. A. 1991. Synergistic effects of oak volatiles with ethanol in the capture of saprophagous wood borers. / J. Entomol. Sci. 26:425鈥?29.
    11. Erwin, D. C. and Ribeiro, O. K. 1996. / Phytophthora Diseases Worldwide. American Phytopathological Society, St. Paul.
    12. Forney, C. F., Jordan, M. A., Nicholas, K. U. K. G., and Deell, J. R. 2000. Volatile emissions and chlorophyll fluorescence as indicators of freezing injury in apple fruit. / HortScience 35:1283鈥?287.
    13. Furniss, R. L. and Carolin, V. M. 1977. Western Forest Insects. Miscellaneous Publication No. 1339. USDA Forest Service, Washington, D.C.
    14. Gara, R. I., Littke, W. R., and Rhoades, D. F. 1993. Emission of ethanol and monoterpenes by fungal infected lodgepole pine trees. / Phytochemistry 34:987鈥?90. CrossRef
    15. Garbelotto, M., 艩vihra, P., and Rizzo, D. M. 2001. Sudden oak death syndrome fells 3 oak species. / Calif. Agric. 55:9鈥?9. CrossRef
    16. Gibbs, J. and Greenway, H. 2003. Mechanisms of anoxia tolerance in plants. I. Growth, survival, and anaerobic catabolism. / Funct. / Plant Biol. 30:1鈥?7.
    17. Greenway, H. and Gibbs, J. 2003. Mechanisms of anoxia tolerance in plants. II. Energy requirements for maintenance and energy distribution to essential processes. / Plant Biol. 30:999鈥?036.
    18. Gr眉nwald, N. J., Garbelotto, M., Goss, E. M., Heungens, K., and Prospero, S. 2012. Emergence of the sudden oak death pathogen / Phytophthora ramorum. / Trends Microbiol. 20:131鈥?38. CrossRef
    19. Hayden, K. J., Rizzo, D., Tse, J., and Garbelotto, M. 2004. Detection and quantification of / Phytophthora ramorum from California forests using a real-time polymerase chain reaction assay. / Phytopathology 94:1075鈥?083. CrossRef
    20. Hook, D. D. and Brown, C. L. 1972. Permeability of the cambium to air in trees adapted to wet habitats. / Bot. Gaz. 133:304鈥?10. CrossRef
    21. Hook, D. D., Brown, C. L., and Wetmore, R. H. 1972. Aeration in trees. / Bot. Gaz. 133:443鈥?54. CrossRef
    22. Hsieh, H.-M., Ju, Y.-M., and Rogers, J. D. 2005. Molecular phylogeny of / Hypoxylon and closely related genera. / Mycologia 97:844鈥?65. CrossRef
    23. Joseph, G., Kelsey, R. G., Peck, R. W., and Niwa, C. G. 2001. Response of some scolytids and their predators to ethanol and 4-allylanisole in pine forests of central Oregon. / J. Chem. Ecol. 27:697鈥?15. CrossRef
    24. Kelly, M., Shaari, D., Gua, Q., and Liu, D . 2006. Modeling risk for sod nationwide: What are the effects of model choice on risk predictions?, pp. 333鈥?44. / in S. J. Frankel, P. J. Shea, and M. I. Haverty (tech. coordinators), Proceedings of the sudden oak death second science symposium: the state of our knowledge. USDA Forest Service, Gen. Tech. Rep. PSW-GTR-196.
    25. Kelsey, R. G. 1994. Ethanol synthesis in Douglas-fir logs felled in November, January, and March and its relationship to ambrosia beetle attack. / Can. J. For. Res. 24:2096鈥?104. CrossRef
    26. Kelsey, R. G. and Joseph, G. 1998. Ethanol in Douglas-fir with black-stain root disease ( / Leptographium wageneri). / Can. J. For. Res. 28:1207鈥?212. CrossRef
    27. Kelsey, R. G. and Joseph, G. 1999. Ethanol and water in / Pseudotsuga menziesii and / Pinus ponderosa stumps. / J. Chem. Ecol. 25:2779鈥?792. CrossRef
    28. Kelsey, R. G., Joseph, G., and Gerson, E. A. 1998. Ethanol synthesis, nitrogen, carbohydrates, and growth in tissues from nitrogen fertilized / Pseudotsuga menziesii (Mirb.) Franco and / Pinus ponderosa Dougl. ex Laws. seedlings. / Trees 13:103鈥?11.
    29. Kelsey, R. G., Joseph, G., and McWilliams, M. G. 2011. Ethanol synthesis by anoxic root segments from five cedar species relates to their habitat attributes but not their known differences in vulnerability to / Phytophthora lateralis root disease. / Can. J. For. Res. 41:1202鈥?211. CrossRef
    30. Kimmerer, T. W. and Kozlowski, T. T. 1982. Ethylene, ethane, acetaldehyde, and ethanol production by plants under stress. / Plant Physiol. 69:840鈥?47. CrossRef
    31. Kimmerer, T. W. and Stringer, M. A. 1988. Alcohol dehydrogenase and ethanol in the stems of trees. / Plant Physiol. 87:693鈥?97. CrossRef
    32. Klimetzek, D., K枚hler, J., Vit茅, J. P., and Kohnle, U. 1986. Dosage response to ethanol mediates host selection by 鈥渟econdary鈥?bark beetles. / Naturwissenschaften 73:270鈥?72. CrossRef
    33. Kreuzwieser, J., K眉hnemann, F., Martis, A., Rennenberg, H., and Urban, W. 2000. Diurnal pattern of acetaldehyde emission by flooded poplar trees. / Physiol. Plant. 108:79鈥?6. CrossRef
    34. Littel, R. C., Milliken, G. A., Stroup, W. W., Wolfinger, R. D., and Schabenberger, O. 2006. SAS for Mixed Models, 2nd ed. SAS Institute Inc., Cary.
    35. MacDonald, R. C. and Kimmerer, T. W. 1991. Ethanol in the stems of trees. / Physiol. Plant. 82:582鈥?88. CrossRef
    36. MacDonald, R. C. and Kimmerer, T. W. 1993. Metabolism of transpired ethanol by eastern cottonwood / (Populus deltoides Bartr.). / Plant Physiol. 102:173鈥?79.
    37. Mancuso, S. and Marras, A. M. 2003. Different pathways of the oxygen supply in the sapwood of young / Olea europaea trees. / Planta 216:1028鈥?033.
    38. Manter, D. K., Kelsey, R. G., and Karchesy, J. J. 2007. Photosynthetic declines in / Phytophthora ramorum-infected plants develop prior to water stress and in response to exogenous application of elicitins. / Phytopathology 97:850鈥?56. CrossRef
    39. McPerson, B. A., Mori, S. A., Wood, D. A., Storer, A. J., 艩vihra, P., Kelly, N. M., and Standiford, R. B. 2005. Sudden oak death in California: Disease progression in oaks and tanoaks. / For. Ecol. Manag. 213:71鈥?9. CrossRef
    40. McPherson, B. A., Erbilgin, N., Wood, D. L., Svihra, P., Storer, A. J., and Standiford, R. B. 2008. Attraction of ambrosia and bark beetles to coast live oaks infected by Phytophthora ramorum. / Agric. For. Entomol. 10:315鈥?21. CrossRef
    41. McPherson, B. A., Mori, S. R., Wood, D. L., Kelly, M., Storer, A. J., 艩vihra, P., and Standiford, R. B. 2010. Responses of oaks and tanoaks to the sudden oak death pathogen after 8 y of monitoring in two coastal California forests. / For. Ecol. Manag. 259:2248鈥?255. CrossRef
    42. Meentemeyer, R., Rizzo, D., Mark, W., and Lotz, E. 2004. Mapping the risk of establishment and spread of sudden oak death in California. / For. Ecol. Manag. 200:195鈥?14. CrossRef
    43. Miller, D. R. and Duerr, D. A. 2008. Comparison of arboreal beetle catches in wet and dry collection cups with Lindgren multiple funnel traps. / J. Econ. Entomol. 101:107鈥?13. CrossRef
    44. Miller, D. R. and Rabaglia, R. J. 2009. Ethanol and (鈭? / -伪-pinene: Attractant kairomones for bark and ambrosia beetles in the southeastern US. / J. Chem. Ecol. 35:435鈥?48. CrossRef
    45. Monahan, W. B. and Koenig, W. D. 2006. Estimating the potential effects of sudden oak death on oak-dependent birds. / Biol. Conserv. 127:146鈥?57. CrossRef
    46. Noseworthy, M. K., Humble, L. M., Sweeney, J., Silk, P., and Mayo, P. 2012. Attraction of / Monarthrum scutellare (Coleoptera: Curculionidae: Scolytinae) to hydroxy ketones and host volatiles. / Can. J. For. Res. 42:1851鈥?857. CrossRef
    47. Ockels, F. S., Eyles, A., McPherson, B. A., Wood, D. L., and Bonello, P. 2007. Phenolic chemistry of coast live oak response to / Phytophthora ramorum infection. / J. Chem. Ecol. 33:1721鈥?732. CrossRef
    48. Oliver, J. B. and Mannion, C. M. 2001. Ambrosia beetle (Coleoptera: Scolytidae) species attacking chestnut and captured in ethanol-baited traps in middle Tennessee. / Environ. Entomol. 30:909鈥?18. CrossRef
    49. Parke, J. L., Oh, E., Voelker, S., Hansen, E. M., Buckles, G., and Lachenbruch, B. 2007. / Phytophthora ramorum colonizes tanoak xylem and is associated with reduced stem water transport. / Phytopathology 97:1558鈥?567. CrossRef
    50. Pitman, G. B., Hedden, R. L., and Gara, R. I. 1975. Synergistic effects of ethyl alcohol on the aggregation of / Dendroctonus pseudotsugae (Col., Scolytidae) in response to pheromones. / Z. Angew. Entomol. 78:203鈥?08. CrossRef
    51. Pureswaran, D. S. and Borden, J. H. 2005. Primary attraction and kairomonal host discrimination in three species of / Dendroctonus (Coleoptera: Scolytidae). / Agric. For. Entomol. 7:219鈥?30. CrossRef
    52. Ranger, C. M., Reding, M. E., Persad, A. B., and Herms, D. A. 2010. Ability of stress-related volatiles to attract and induce attacks by / Xylosandrus germanus and other ambrosia beetles. / Agric. For. Entomol. 12:177鈥?85. CrossRef
    53. Ranger, C. M., Reding, M. E., Gandhi, K. J. K., Oliver, J. B., Schulty, P. B., Ca帽as, L., and Herms, D. A. 2011. Species dependent influence of (鈭?-伪-pinene on attraction of ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) to ethanol-baited traps in nursery agroecosystems. / J. Econ. Entomol. 104:574鈥?79. CrossRef
    54. Rizzo, D. M., Garbelotto, M., Davidson, J. M., Slaughter, G. W., and Koike, S. T. 2002. / Phytophthora ramorum as the cause of extensive mortality of / Quercus spp. and / Lithocarpus densiflorus in California. / Plant Dis. 86:205鈥?14. CrossRef
    55. Rottenberger, S., Kleiss, B., Kuhn, U., Wolf, A., Piedade, M. T. F., Junk, W., and Kesselmeier, J. 2008. The effect of flooding on the exchange of the volatile C2-compounds ethanol, acetaldehyde and acetic acid between leaves of Amazonian floodplain tree species and the atmosphere. / Biogeosciences 5:1085鈥?100. CrossRef
    56. SAS Institute Inc. 2008. SAS/STAT庐 9.2. User鈥檚 Guide. SAS Institute Inc., Cary.
    57. Schroeder, L. M. and Lindel枚w, 脜. 1989. Attraction of scolytids and associated beetles by different absolute amounts and proportions of 伪-pinene and ethanol. / J. Chem. Ecol. 15:807鈥?17. CrossRef
    58. Sorz, J. and Hietz, P. 2006. Gas diffusion through wood: implications for oxygen supply. / Trees 20:34鈥?1. CrossRef
    59. Spicer, R. and Holbrook, N. M. 2005. Within-stem oxygen concentration and sap flow in four temperate tree species: Does long-lived xylem parenchyma experience hypoxia? / Plant Cell Environ. 28:192鈥?01. CrossRef
    60. 艩vihra, P. and Kelly, M. 2004. Importance of oak ambrosia beetles in predisposing coast live oak trees to wood decay. / J. Arboric. 30:371鈥?75.
    61. Swiecki, T. J., Bernhardt, E., Drake, C., and Costello, L. R. 2006. Relationships between / Phytophthora ramorum canker (sudden oak death) and failure potential in coast live oak, pp. 427鈥?53. / in S. J. Frankel, P. J. Shea, and M. I. Haverty (tech. coordinators), Proceedings of the sudden oak death second science symposium: the state of our knowledge. USDA Forest Service, Gen. Tech. Rep. PSW-GTR-196.
    62. Tempel, D. J., Tietje, W. D., and Winslow, D. E. 2006. Vegetation and small vertebrates of oak woodlands at low and high risk for sudden oak death in San Luis Obispo County, California, pp. 211鈥?32. / in S. J. Frankel, P. J. Shea, and M. I. Haverty (tech. coordinators), Proceedings of the sudden oak death second science symposium: the state of our knowledge. USDA Forest Service, Gen. Tech. Rep. PSW-GTR-196.
    63. Valachovic, Y. S., Lee, C. A., Scanlon, H., Varner, J. M., Glebocki, R., Graham, B. D., and Rizzo, D. M. 2011. Sudden oak death-caused changes to surface fuel loading and potential fire behavior in Douglas-fir-tanoak forests. / For. Ecol. Manag. 261:1973鈥?986. CrossRef
    64. Vartapetian, B. B. 2006. Plant anaerobic stress as a novel trend in ecological physiology, biochemistry, and molecular biology: 2. Further development of the problem. / Russ. J. Plant Physiol. 53:711鈥?38. CrossRef
    65. Weinhold, A. R. and Garraway, M. O. 1966. Nitrogen and carbon nutrition of / Armillaria mellea in relation to growth-promoting effects of ethanol. / Phytopathology 56:108鈥?12.
    66. Winslow, D. E. and Tietje, W. D. 2006. Potential effects of sudden oak death on birds in coastal oak woodlands, pp. 305鈥?28. / in S. J. Frankel, P. J. Shea, and M.I. Haverty (tech. coordinators), Proceedings of the sudden oak death second science symposium: the state of our knowledge. USDA Forest Service, Gen. Tech. Rep. PSW-GTR-196.
  • 作者单位:Rick G. Kelsey (1)
    Maia M. Beh (2)
    David C. Shaw (2)
    Daniel K. Manter (3)

    1. USDA Forest Service, Pacific Northwest Research Station, Corvallis, OR, 97331, USA
    2. Department of Forest Engineering, Resources & Management, Oregon State University, Corvallis, OR, 97331, USA
    3. USDA Agricultural Research Service, Ft. Collins, CO, 80526, USA
文摘
Ethanol in sapwood was analyzed along vertical transects, through small spot cankers and larger basal cankers, of Phytophthora ramorum-infected stems of Quercus agrifolia at three sites in California. Trees with large basal cankers, known to attract scolytid beetles, had a 4.3 times higher ethanol level than trees with spot cankers that attract fewer beetles. Ethanol concentrations inside cankers, where scolytid beetles preferentially attack, varied by about four orders of magnitude among samples, with a median level of 16.0聽渭g.g鈭? fresh mass. This concentration was 4.3 and 15.5 times greater, respectively, than the concentrations at 1聽cm or 15鈥?0聽cm outside the canker boundaries. In the laboratory, we demonstrated that ethanol escaped through the bark of a Q. garryana log just 3聽days after it was added to the sapwood. At the three study sites, traps baited with ethanol captured more Xyleborinus saxesenii, Pseudopityophthorus pubipennis, and Monarthrum dentiger (all Coleoptera: Curculionidae: Scolytinae) than traps baited with ethanol plus (鈭?-伪-pinene, or ethanol plus 4-allylanisole (4AA). Logs of Q. agrifolia with a 50聽% ethanol solution added to the sapwood were placed at the study sites, with or without additional bark treatments above the ethanol. The number of scolytid beetle gallery holes above the ethanol-infused sapwood was 4.4 times greater than that on the opposite side of the log where no ethanol was added. Attachment of ultra-high release (鈭?-伪-pinene pouches to the bark surface above the 50聽% ethanol solution reduced scolytid attacks to a density of 19.1聽% that of logs without this treatment. We conclude that ethanol in P. ramorum cankers functions as a primary host attractant for scolytid beetles and is an important link in colonization of these cankers and accelerated mortality of Q. agrifolia. The results of this research shed light on the chemical ecology behind the focused scolytid attacks on P. ramorum-infected coast live oaks, and lay the groundwork for future efforts to prolong the survival of individual trees of this keystone species.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.