Modification of multiwall carbon nanotubes with ruthenium(II) terpyridine complex
详细信息    查看全文
  • 作者:Huayang Li (1)
    Jie Wu (2)
    Yassin A. Jeilani (3)
    Conrad W. Ingram (1)
    Issifu I. Harruna (1) iharruna@cau.edu
  • 关键词:Multiwall carbon nanotubes &#8211 ; Functionalized ruthenium multiwall carbon nanotubes &#8211 ; Ruthenium terpyridine complexes &#8211 ; Covalent amidation &#8211 ; 2 ; 2′ ; 6′ ; 2″ ; Terpyridine
  • 刊名:Journal of Nanoparticle Research
  • 出版年:2012
  • 出版时间:June 2012
  • 年:2012
  • 卷:14
  • 期:6
  • 页码:DOI: 10.1007/s11051-
  • 全文大小:809.2 KB
  • 参考文献:1. Avouris P, Dresselhaus G, Dresselhaus MS (2000) Carbon nanotubes: synthesis, structure, properties and applications. Springer, Berlin
    2. Bahr JL, Tour JM (2002) Covalent chemistry of single-wall carbon nanotubes. J Mater Chem 12:1952–1958
    3. Baskaran D, Mays JW, Bracher MS (2004) Polymer-grafted multiwalled carbon nanotubes through surface-initiated polymerization. Angew Chem Int Ed 43:2138–2142
    4. Chen RJ, Zhang Y, Wang D, Dai HJ (2001) Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc 123:3838–3839
    5. Chen J, Liu HY, Weimer WA, Halls MD, Waldeck DH, Walker GC (2002) Noncovalent engineering of carbon nanotube surfaces by rigid functional conjugated polymers. J Am Chem Soc 124:9034–9035
    6. Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A, Kallitsis I, Galiotis A (2008) Chemical oxidation of multiwalled carbon nanotubes. Carbon 46:833–840
    7. Dohn S, Mφihave K, Peter B (2005) Direct measurement of resistance of multiwalled carbon nanotubes using micro four-point probes. Sensor Lett 3:1–4
    8. Eranda M, Atula SDS, Taku H, Osamu I, Francis DS (2010) Sensitive efficiency of photoinduced electron transfer to band gaps of semiconductive single-walled carbon nanotubes with supramolecularly attached zinc porphyrin bearing pyrene glues. J Am Chem Soc 132:8158–8164
    9. Fallahpour R, Neuburger M, Zehnder M (1999) Homoleptic and heteroleptic iron (II) and ruthenium (II) complexes of novel 4′-nitro-2,2′:6′,2″-terpyridines and 4′-amino-2,2′:6′,2″-terpyridines. New J Chem 23:53–61
    10. Frehill F, Vos JG, Benrezzak S, Ko贸s AA, K贸nya Z, R眉ther MG, Blau WJ, Fonseca A, Nagy JB, Biro LP, Minett AI, Panhuis M (2002) Interconnecting carbon nanotubes with an inorganic metal complex. J Am Chem Soc 124(46):13694–13695
    11. Gao C, Jin Y, Kong H, Whitby RLD, Acquah SFA, Chen GY, Qian H, Hartschuh A, Silva SRP, Henley S, Fearon P, Kroto HW, Walton DRM (2005) Polyurea-functionalized multiwalled carbon nanotubes: synthesis, morphology, and Raman spectroscopy. J Phys Chem B 109:11925–11932
    12. Harris PJF (1999) Carbon nanotubes and related structures. Cambridge University Press, Cambridge
    13. Hill DE, Lin Y, Allard LF, Sun Y (2002) Solubilization of carbon nanotubes via polymer attachment. Intl J Nanosci 1:213–221
    14. Hirsch A, Vostrowsky O (2005) Functionalization of carbon nanotubes. Top Curr Chem 245:193–237
    15. Hofmeier H, Schubert US (2004) Recent developments in the supramolecular chemistry of terpyridine–metal complexes. Chem Soc Rev 33:373–399
    16. Hou P, Liu C, Tong Y, Xu S, Liu M, Cheng H (2001) Purification of single-walled carbon nanotubes synthesized by the hydrogen arc-discharge method. J Mater Res 16:2526–2529
    17. Huang H, Liu I, Chang C, Tsai H, Hsu C, Tsiang R (2004) Preparing a polystyrene-functionalized multiple-walled carbon nanotubes via covalently linking acyl chloride functionalities with living polystyryllithium. J Polym Sci A 42:5802–5810
    18. Hwang S, Moorefield CN, Dai L, Newkome GR (2006) Functional nanohybrids constructed via complexation of multiwalled carbon nanotubes with novel hexameric metallomacrocyles. Chem Mater 18:4019–4024
    19. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58
    20. Karousis N, Tagmatarchis N, Tasis D (2010) Current progress on the chemical modification of carbon nanotubes. Chem Rev 110:5366–5397
    21. Kelch S, Rehahn M (1999) Synthesis and properties in solution of rodlike, 2,2′:6′2″-terpyridine-based ruthenium (II) coordination polymers. Macromolecules 32:5818–5828
    22. Khairoutdinov RF, Doubova LV, Haddon RC, Saraf L (2004) Persistent photoconductivity in chemically modified single-wall carbon nanotubes. J Phys Chem B 108:19976–19981
    23. Li Y, Qi H, Fang F, Zhang C (2007) Ultrasensitive electrogenerated chemiluminescence detection of DNA hybridization using carbon-nanotubes loaded with tris(2,2′-bipyridyl) ruthenium derivative tags. Talanta 72:1704–1709
    24. Li J, Guo L, Gao W, Xia X, Zheng L (2009) Enhanced electrochemiluminescence efficiency of Ru(II) derivative covalently linked carbon nanotubes hybrid. Chem Commun 12:7545–7547
    25. Lin Y, Rao AM, Sadanadan B, Kenik EA, Sun Y (2002) Functionalizing multiple-walled carbon nanotubes with aminopolymers. J Phys Chem B106:1294–1298
    26. Mcqueen EW, Goldsmith JI (2009) Electrochemical analysis of single-walled carbon nanotubes functionalized with pyrene–pendant transition metal complexes. J Am Chem Soc 131:17554–17556
    27. Muller M, Papagelis K, Maultzsch J, Stefopoulos AA, Pefanakis EK, Andreopoulou AK, Kallitsi JK, Thomsen C (2009) Raman spectroscopy of single wall carbon nanotubes functionalized with terpyridine–ruthenium complexes. Phys Status Solidi B 246:2721–2723
    28. Ou YY, Huang MH (2006) High-density assembly of gold nanoparticles on multiwalled carbon nanotubes using-pyrenemethylamine as interlinker. J Phys Chem B 110:2031–2036
    29. Pan Y, Tong B, Shi J, Zhao W, Shen J, Zhi J, Dong Y (2010) Fabrication, characterization, and optoelectronic properties of layer-by-layer films based on terpyridine-modified MWCNTs and ruthenium (III) ions. J Phys Chem C 114:8040–8047
    30. Petrov P, Stassin F, Pagnoulle C, Je’rome R (2003) Noncovalent functionalization of multi-walled carbon nanotubes by pyrene containing polymers. Chem Commun 7:2904–2905
    31. Reich S, Thomson C, Maultzsch J (2004) Carbon nanotubes: basic concepts and physical properties. Wiley, New York
    32. Schubert US, Escherichia C (2002) Macromolecules containing bipyridine and terpyridine metal Complexes: towards macromolecular polymers. Angew Chem Int Ed 41:2892–2926
    33. Schubert US, Hofmeier H, Newkome GR (2006) Modern terpyridine chemistry. Wiley-VCH, Weisenheimer
    34. Schuman SB, Voltaic B, Biswas S, Thirster B, Schoolmaster LJ (2002) Electrical behavior of isolated multiwall carbon nanotubes characterized by scanning surface potential microscopy. Appl Phys Lett 81:541–543
    35. Singh RP (2011) Prospects of materializations for biosensing. Int J Electrochem 2011:1–30
    36. Star A, Liu Y, Grant K, van Rid L, Stoddard JF, Steuerman DW, Diesel MR, Bourbaki A, Heath JR (2003) Noncovalent side-wall functionalization of single-walled carbon nanotubes. Macromolecules 36:553–560
    37. Stefopoulos AA, Pakistanis EK, Papagelis K, Andreopoulou AK, Kallitsis JK (2009) Carbon nanotubes decorated with pyridine–ruthenium complexes. J Polym Sci A 47:2551–2559
    38. Steuerman DW, Star A, Notarization R, Chou H, Rees RS, Nicoline C, Stoddard JF, Heath JR (2002) Interactions between conjugated polymers and single-walled carbon nanotubes. J Phys Chem B 106:3124–3130
    39. Sun YP, Fu K, Lin Y, Huang W (2002) Functionalism carbon nanotubes: properties and applications. Acc Chem Res 35:1096–1104
    40. Tanaka K, Yamaha T, Fukuoka K (1999) The science and technology of carbon nanotubes. Elsevier, Oxford
    41. Tang M, Doy H, Sun K (2006) One-step synthesis of dextrose-based stable nanoparticles assisted by self-assembly. Polymer 47:728–734
    42. Tang B, Yu F, Li P, Tong L, Dyan X, Xe T, Wang X (2009) A near-infrared neutral pH fluorescent probe for monitoring minor pH changes: imaging in living HepG2 and HL-7702 cells. J Am Chem Soc 131:3016–3023
    43. Tasis D, Tagmatarchis N, Bianco A, Pratt M (2006) Chemistry of carbon nanotubes. Chem Rev 106:1105–1135
    44. Tasis D, Papagelis K, Pratt M, Kallitsis I, Galiotis C (2007) Water-soluble carbon nanotubes by redox radical polymerization. Macromol Rapid Commun 28:1553–1558
    45. Wang X, Liu Y, Shu D (2001) Pillar-shaped structures and patterns of three-dimensional carbon nanotube alignments. Chem Commun 8:751–752
    46. Wang P, Moorefield CN, Li S, Marquez J, Shredding CD, Busts E, Shredding CD, Busts E, Hartley AL, Godliness LA, Newkome GR (2007) Synthesis of a water-soluble hexameric metallography and its oxidized single-wall carbon nanotube composite. J Mater Chem 17:3023–3029
    47. Yang LP, Pan CY (2008) A non-covalent method to functionalize multi-walled carbon nanotubes using six-armed star poly(L-lactic acid) with a triphenylarsine core. Macromol Chem Phys 209:783–793
    48. Yang W, Rating KR, Ringer SP, Thorstein P, Golding JJ, Bret F (2010) Carbon nanomaterials in biosensors: Should you use nanotubes or graphene? Angew Chem Int Ed 49:2114–2138
    49. Zdrojek M, Gerick W, Jastrow C, Melina T, Huck A (2004) Studies of multiwall carbon nanotubes using Raman spectroscopy and atomic force microscopy. Solid State Phenom 99(100):265–268
  • 作者单位:1. Chemistry Department, Clark Atlanta University, 223 James P. Brawley Drive, SW, Atlanta, GA 30314, USA2. School of Materials Science and Engineering, Georgia Institute of Technology, 10th Street, NW, Atlanta, GA 30332, USA3. Department of Chemistry, Spelman College, 350 Spelman Lane, Atlanta, GA 30314, USA
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Nanotechnology
    Inorganic Chemistry
    Characterization and Evaluation Materials
    Physical Chemistry
    Applied Optics, Optoelectronics and Optical Devices
  • 出版者:Springer Netherlands
  • ISSN:1572-896X
文摘
Multiwall carbon nanotubes (MWCNTs, 1–3 μM in length and 20–25 nm in diameter) were initially functionalized with a 2,2′:6′2″-terpyridine-chelated ruthenium(II) complex by covalent amidation. The resulting functionalized ruthenium MWCNTs (RuMWCNTs, 1–2 μM in length and 10–20 nm in diameter) were characterized by thermogravimetric analysis, X-ray photoelectronic spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and scanning electron microscopy (SEM). Thermogravimetric experiments of RuMWCNTs show that the functional group coverage of terpyridine–rutheniun–terpyridine (tpy–Ru–tpy) is 0.7036 mmol/1.0 g carbon. The XPS results show N1s and Ru3d5/5 signals, confirming the presence of tpy–Ru–tpy groups on the surface of MWCNTs. The FTIR spectra of the RuMWCNTs display the typical stretching mode of the carboxyl group (amide I) and a combination of amide N–H and C–N stretching mode (amide II). The Raman D- and G-line peak intensity ratio of RuMWCNTs (ID/IG 2.21) exceeds that of pristine MWCNTs (ID/IG 1.93), suggesting covalent bonding of tpy–Ru–tpy to MWCNTs and supporting the disruption of the graphitic integrity due to the proposed covalent functionalization. High-resolution SEM images confirm that tpy–Ru–tpy moieties are interconnected or attached as aggregated structures (100–200-nm range) on the surfaces of the carbon nanotubes after functionalization. The electrical property of RuMWCNTs depicts higher resistance (10.10 M Ω) than that of OX-MWCNTs (15.38 kΩ).
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.