Detection of Pulsation in Unruptured Cerebral Aneurysms by ECG-Gated 3D-CT Angiography (4D-CTA) with 320-Row Area Detector CT (ADCT) and Follow-up Evaluation Results: Assessment Based on Heart Rate at the Time of Scanning
详细信息    查看全文
  • 作者:M. Hayakawa MD (1)
    T. Tanaka MD (1)
    A. Sadato MD (1)
    K. Adachi MD (1)
    K. Ito MD (1)
    N. Hattori MD (1)
    T. Omi MD (1)
    M. Oheda MD (1)
    K. Katada MD (2)
    K. Murayama MD (2)
    Y. Kato MD (1)
    Y. Hirose MD (1)
  • 关键词:Cerebral aneurysm ; 3D ; CTA ; MRA ; 4D ; CTA ; Subarachnoid hemorrhage ; Aspect ratio
  • 刊名:Clinical Neuroradiology
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:24
  • 期:2
  • 页码:145-150
  • 全文大小:
  • 参考文献:1. Ingall TJ, Whisnant JP, Wiebers DO, O’Fallon WM. Has there been a decline in subarachnoid hemorrhage mortality? Stroke. 1989;20:718-4. CrossRef
    2. Fogelholm R, Hernesniemi J, Vapalahti M. Impact of early surgery on outcome after aneurysmal subarachnoid hemorrhage. A population based study. Stroke. 1993;24:1649-4. CrossRef
    3. Ishibashi T, Murayama Y, Urashima M, Saguchi T, Ebara M, Arakawa H, et al. Unruptured intracranial aneurysms: incidence of rupture and risk factors. Stroke. 2009;40:313-. CrossRef
    4. Juvela S, Porras M, Poussa K. Natural history of unruptured intracranial aneurysms: probability of and risk factors for aneurysm rupture. J Neurosurg. 2008;108:1052-0. CrossRef
    5. Nahed BV, Bydon M, Ozturk AK, Bilguvar K, Bayrakli F, Gunel M. Genetics of intracranial aneurysms. Neurosurgery. 2007;60:213-5. CrossRef
    6. Nahed BV, DiLuna ML, Morgan T, Ocal E, Hawkins AA, Ozduman K, et al. Hypertension, age, and location predict rupture of small intracranial aneurysms. Neurosurgery. 2005;57:676-3. CrossRef
    7. Sonobe M, Yamazaki T, Yonekura M, Kikuchi H. Small unruptured intracranial aneurysm verification study: SUAVe study, Japan. Stroke. 2010;41:1969-7. CrossRef
    8. Ujiie H, Tachibana H, Hiramatsu O, Hazel AL, Matsumoto T, Ogasawara Y, et al. Effects of size and shape (aspect ratio) on the hemodynamics of saccular aneurysms: a possible index for surgical treatment of intracranial aneurysms. Neurosurgery. 1999;45:119-9. CrossRef
    9. Wermer MJ, van der Schaaf IC, Algra A, Rinkel GJ. Risk of rupture of unruptured intracranial aneurysms in relation to patient and aneurysm characteristics: an updated meta-analysis. Stroke. 2007;38:1404-0. CrossRef
    10. Wiebers DO, Whisnant JP, Huston J 3rd, Meissner I, Brown RD Jr, Piepgras DG, et al. Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet. 2003;362:103-0. CrossRef
    11. Beck J, Rohde S, Berkefeld J, Seifert V, Andreas R. Size and location of ruptured and unruptured intracranial aneurysms measured by 3-dimensional rotational angiography. Surg Neurol. 2006;65:18-7. CrossRef
    12. Weir B, Disney L, Karrison T. Sizes of ruptured and unruptured aneurysms in relation to their sites and the ages of patients. J Neurosurg. 2002;96:64-0. CrossRef
    13. Cebral JR, Castro MA, Burgess JE, Pergolizzi RS, Sheridan MJ, Putman CM. Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models. AJNR Am J Neuroradiol. 2005;26:2550-.
    14. Hassan T, Timofeev EV, Saito T, Shimizu H, Ezura M, Matsumoto Y, et al. A proposed parent vessel geometry-based categorization of saccular intracranial aneurysms: computational flow dynamics analysis of the risk factors for lesion rupture. J Neurosurg. 2005;103:662-0. CrossRef
    15. Hoi Y, Meng H, Woodward SH, Bendok BR, Hanel RA, Guterman LR, et al. Effects of arterial geometry on aneurysm growth: three-dimensional computational fluid dynamics study. J Neurosurg. 2004;101:676-1. CrossRef
    16. Shojima M, Oshima M, Takagi K, Torii R, Hayakawa M, Katada K, et al. Magnitude and role of wall shear stress on cerebral aneurysm: computational fluid dynamic study of 20 middle cerebral artery aneurysms. Stroke. 2004;35:2500-. CrossRef
    17. Takao H, Murayama Y, Otsuka S, Qian Y, Mohamed A, Masuda S, et al. Hemodynamic differences between unruptured and ruptured intracranial aneurysms during observation. Stroke. 2012;43:1436-. CrossRef
    18. Hayakawa M, Maeda S, Sadato A, Tanaka T, Kaito T, Hattori N, et al. Detection of pulsation in ruptured and unruptured cerebral aneurysms by electrocardiographically gated 3-dimensional computed tomographic angiography with a 320-row area detector computed tomography and evaluation of its clinical usefulness. Neurosurgery. 2011;69:843-1. CrossRef
    19. Ertel D, Kr?ber E, Kyriakou Y, Langner O, Kalender WA. Modulation transfer function-based assessment of temporal resolution: validation for single- and dual-source CT. Radiology. 2008;248:1013-. CrossRef
    20. Inoue T, Shimizu H, Fujimura M, Saito A, Tominaga T. Annual rupture risk of growing unruptured cerebral aneurysms detected by magnetic resonance angiography. J Neurosurg. 2012;117:20-. CrossRef
    21. Miyazawa N, Akiyama I, Yamagata Z. Risk factors for growth of unruptured intracranial aneurysms: follow-up study by serial 0.5-T magnetic resonance angiography. Neurosurgery. 2006;58:1047-3. CrossRef
    22. Phan TG, Huston J III, Brown RD Jr, Wiebers DO, Piepgras DG. Intracranial saccular aneurysm enlargement determined using serial magnetic resonance angiography. J Neurosurg. 2002;97:1023-. CrossRef
  • 作者单位:M. Hayakawa MD (1)
    T. Tanaka MD (1)
    A. Sadato MD (1)
    K. Adachi MD (1)
    K. Ito MD (1)
    N. Hattori MD (1)
    T. Omi MD (1)
    M. Oheda MD (1)
    K. Katada MD (2)
    K. Murayama MD (2)
    Y. Kato MD (1)
    Y. Hirose MD (1)

    1. Department of Neurosurgery, School of Medicine, Fujita Health University, Toyoake, 470-1192, Aichi, Japan
    2. Department of Radiology, School of Medicine, Fujita Health University, Aichi, Japan
  • ISSN:1869-1447
文摘
Purpose Many epidemiological studies on unruptured cerebral aneurysms have reported that the larger the aneurysm, the higher the risk of rupture. However, many ruptured aneurysms are not large. Electrocardiography (ECG)-gated 3D-computed tomography angiography (4D-CTA) was used to detect pulsation in unruptured cerebral aneurysms. The differences in the clinical course of patients in whom pulsation was or was not detected were then evaluated. Methods Forty-two patients with 62 unruptured cystiform cerebral aneurysms who underwent 4D-CTA and follow-up 3D-CTA more than 120 days later were studied. The tube voltage, tube current, and rotation speed were 120?kV, 270?mA, and 0.35?s/rot., respectively. ECG-gated reconstruction was performed, with the cardiac cycle divided into 20 phases. Patients with heart rates higher than 80?bpm were excluded, so 37 patients with 56 aneurysms were analyzed. Results Pulsation was detected in 20 of the 56 unruptured aneurysms. Of these 20 aneurysms, 6 showed a change in shape at the time of follow-up. Of the 36 aneurysms in which pulsation was not detected, 2 showed a change in shape at follow-up. There was no significant difference in the follow-up interval between the two groups. The aneurysms in which pulsation was detected were significantly more likely to show a change in shape (P?=?0.04), with a higher odds ratio of 7.286. Conclusion Unruptured aneurysms in which pulsation was detected by 4D-CTA were more likely to show a change in shape at follow-up, suggesting that 4D-CTA may be useful for identifying aneurysms with a higher risk of rupture.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.