Trophodynamics and functional feeding groups of North Sea fauna: a combined stable isotope and fatty acid approach
详细信息    查看全文
  • 作者:Benjamin Kürten (1)
    Inmaculada Frutos (2)
    Ulrich Struck (3)
    Suzanne J. Painting (4)
    Nicholas V. C. Polunin (5)
    Jack J. Middelburg (6) (7)
  • 关键词:Benthic–pelagic coupling ; Food web structure ; Phospholipid ; derived fatty acids ; Suprabenthos ; Trophodynamics ; Zooplankton
  • 刊名:Biogeochemistry
  • 出版年:2013
  • 出版时间:3 - May 2013
  • 年:2013
  • 卷:113
  • 期:1
  • 页码:189-212
  • 全文大小:1069KB
  • 参考文献:1. Asmus R, Asmus H (1991) Mussel beds: limiting or promoting phytoplankton. J Exp Mar Biol Ecol 148:215-32 CrossRef
    2. Attrill MJ, Wright J, Edwards M (2007) Climate-related increases in jellyfish frequency suggest a more gelatinous future for the North Sea. Limnol Oceanogr 52:480-85 CrossRef
    3. Auel H, Harjes M, da Rocha R, Stübing D, Hagen W (2002) Lipid biomarkers indicate different ecological niches and trophic relationships of the arctic hyperiid amphipods / Themisto abyssorum and / T. libellula. Polar Biol 25:374-83
    4. Beare DJ, Burns F, Greig A, Jones EG, Peach K, Kienzle M, McKenzie E, Reid DG (2004) Long-term increases in prevalence of North Sea fishes having southern biogeographic affinities. Mar Ecol Prog Ser 284:169-76 CrossRef
    5. Beaugrand G, Brander KM, Lindley JA, Souissi S, Reid PC (2003) Plankton effect on cod recruitment in the North Sea. Nature 426:661-64 CrossRef
    6. Bergé J-P, Barnathan G (2005) Fatty acids from lipids of marine organisms: molecular biodiversity, roles as biomarkers of biologically active compounds, and economical aspects. Adv Biochem Eng Biotechnol 96:49-25
    7. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Phys 37:911-17 CrossRef
    8. Boschker HTS, Middelburg JJ (2002) Stable isotopes and biomarkers in microbial ecology. FEMS Microbiol Ecol 40:85-5 CrossRef
    9. Boschker HTS, de Brouwer JFC, Cappenberg TE (1999) The contribution of macrophyte-derived organic matter to microbial biomass in salt-marsh sediments: stable isotope analysis of microbial biomarkers. Limnol Oceanogr 44:309-19 CrossRef
    10. Boschker HTS, Kromkamp JC, Middelburg JJ (2005) Biomarker and carbon isotopic constraints on bacterial and algal community structure and functioning in a turbid, tidal estuary. Limnol Oceanogr 50:70-0 CrossRef
    11. Brett MT, Müller-Navarra DC, Persson J (2009) Crustacean zooplankton fatty acid composition. In: Arts MT, Brett MT, Kainz MJ (eds) Lipids in aquatic ecosystems. Springer, Dordrecht, pp 115-46 CrossRef
    12. Brunel P, Bresner M, Messier D, Poirier L, Granger D, Weistein M (1978) Le tra?neau Macer-GIROQ: appareil amélioré pour l’échantillonnage quantitatif de la petite faune nageuse au voisinage du fond. Int Rev Hydrobiol 63:815-29 CrossRef
    13. Callaway R, Engelhard GH, Dann J, Cotter J, Rumohr H (2007) A century of North Sea epibenthos and trawling: comparison between 1902-912, 1982-985 and 2000. Mar Ecol Prog Ser 346:27-3 CrossRef
    14. Canuel EA, Cloern JE, Ringelberg DB, Guckert JB, Rau GH (1995) Molecular and isotopic tracers used to examine sources organic matter and its incorporation into the food webs of San Francisco Bay. Limnol Oceanogr 40:67-1 CrossRef
    15. Caut S, Angulo E, Courchamp F (2009) Variation in discrimination factors ( / δ 15N and / δ 13C): the effect of diet isotopic values and application for diet reconstruction. J Appl Ecol 46:443-53 CrossRef
    16. Christensen JT, Richardson K (2008) Stable isotope evidence of long-term changes in the North Sea food web structure. Mar Ecol Prog Ser 368:1- CrossRef
    17. Chuecas L, Riley JP (1969) Component fatty acids of the total lipids of some marine phytoplankton. J Mar Biol Assoc UK 49:97-16 CrossRef
    18. Clarke KR, Gorley RN (2006) PRIMER v6: User Manual/Tutorial. PRIMER-E Ltd., Plymouth
    19. Cripps GC, Atkinson A (2000) Fatty acid composition as an indicator of carnivory in Antarctic krill, / Euphausia superba. Can J Fish Aquat Sci 57:31-7 CrossRef
    20. Dalsgaard J, St. John M, Kattner G, Müller-Navarra DC, Hagen W (2003) Fatty acid trophic markers in the pelagic marine environment. Adv Mar Biol 46:225-40 CrossRef
    21. Darnaude AM, Salen-Picard C, Harmelin-Vivien ML (2004) Depth variation in terrestrial particulate organic matter exploitation by marine coastal benthic communities off the Rhone river delta (NW Mediterranean). Mar Ecol Prog Ser 275:47-7 CrossRef
    22. Das K, Lepoint G, Leroy Y, Bouquegneau JM (2003) Marine mammals from the southern North Sea: feeding ecology data from / δ 13C and / δ 15N measurements. Mar Ecol Prog Ser 263:287-98 CrossRef
    23. de Laender F, van Oevelen D, Soetaert K, Middelburg JJ (2010) Carbon transfer in a herbivore- and a microbial loop-dominated pelagic food web in the southern Barents Sea during spring and summer. Mar Ecol Prog Ser 398:93-07 CrossRef
    24. DeNiro MJ, Epstein S (1978) Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Acta 42:495-06 CrossRef
    25. DeNiro MJ, Epstein S (1981) Influence of diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Acta 45:341-51 CrossRef
    26. Ehrenbaum E (1936) Naturgeschichte und wirtschaftliche Bedeutung der Seefische Nordeuropas, E. Schweizerbart’sche Verlagsbuchhandlung (Erwin N?gele) GmbH, Stuttgart
    27. Falk-Petersen S, Hagen W, Kattner G, Clarke A, Sargent JR (2000) Lipids, trophic relationships, and biodiversity in Arctic and Antarctic krill. Can J Fish Aquat Sci 57:178-91 CrossRef
    28. Fanelli E, Cartes JE, Badalamenti F, Rumolo P, Sprovieri M (2009a) Trophodynamics of suprabenthic fauna on coastal muddy bottoms of the southern Tyrrhenian Sea (western Mediterranean). J Sea Res 61:174-87 CrossRef
    29. Fanelli E, Cartes JE, Rumolo P, Sprovieri M (2009b) Food-web structure and trophodynamics of mesopelagic-suprabenthic bathyal macrofauna of the Algerian Basin based on stable isotopes of carbon and nitrogen. Deep Sea Res I 56:1504-520 CrossRef
    30. Fanelli E, Cartes JE, Badalamenti F, D’Anna G, Pipitone C, Azzuro E, Rumollo P, Sprovieri M (2011) Meso-scale variability of coastal suprabenthic communities in the southern Tyrrhenian Sea (western Mediterranean). Estuar Coast Shelf Sci 91:351-60 CrossRef
    31. Gentsch E, Kreibich T, Hagen W, Niehoff B (2009) Dietary shifts in the copepod / Temora longicornis during spring: evidence from stable isotope signatures, fatty acid biomarkers and feeding experiments. J Plankton Res 31:45-0 CrossRef
    32. Graeve M, Kattner G, Hagen W (1994) Diet-induced changes in the fatty acid composition of arctic herbivorous copepods: experimental evidence of trophic markers. J Exp Mar Biol Ecol 182:97-10 CrossRef
    33. Graeve M, Kattner G, Piepenburg D (1997) Lipids in arctic benthos: Does the fatty acid and alcohol composition reflect feeding and trophic interactions? Polar Biol 18:53-1 CrossRef
    34. Graf G (1989) Benthic–pelagic coupling in a deep-sea benthic community. Nature 341:437-39 CrossRef
    35. Hagen W, Auel H (2001) Seasonal adaptations and the role of lipids in the oceanic zooplankton. Zoology 104:312-26 CrossRef
    36. Hamerlynck O, Cattrijsse A (1994) The food of / Pomatoschistus minutus (Pisces, Gobiidae) in Belgian coastal waters, and a comparison with the food of its potential competitor / P. lozanoi. J Fish Biol 44:753-71
    37. Harwood AJP, Dennis PF, Marca AD, Pilling GM, Millner RS (2008) The oxygen isotope composition of water masses within the North Sea. Estuar Coast Shelf Sci 78:353-59 CrossRef
    38. Hoch MP, Fogel ML, Kirchman DL (1992) Isotope fractionation associated with ammonium uptake by a marine bacterium. Limnol Oceanogr 37:1447-459 CrossRef
    39. Hostens K, Mees L (1999) The mysid-feeding guild of demersal fishes in the brackish zone of the Westerschelde estuary. J Fish Biol 55:704-19
    40. Iverson SJ (2009) Tracing aquatic food webs using fatty acids: from qualitative indicators to quantitative determination. In: Arts MT, Brett MT, Kainz MJ (eds) Lipids in aquatic ecosystems. Springer, Dordrecht, pp 281-07 CrossRef
    41. Iverson SJ, Field C, Bowen WD, Blanchard W (2004) Quantitative fatty acid signature analysis: a new method of estimating predator diets. Ecol Monogr 74:211-35 CrossRef
    42. Jackson DA (1993) Multivariate analysis of benthic invertebrate communities: the implication of choosing particular data standardizations, measures of association, and ordination methods. Hydrobiologia 268:9-6 CrossRef
    43. Jennings S, Warr KJ (2003) Environmental correlates of large-scale spatial variation in the / δ 15N of marine animals. Mar Biol 142:1131-140
    44. Jennings S, Pinnegar JK, Polunin NVC, Boon TW (2001) Weak cross-species relationships between body size and trophic level belie powerful size-based trophic structuring in fish communities. J Anim Ecol 70:934-44 CrossRef
    45. Jennings S, Pinnegar JK, Polunin NVC, Warr KJ (2002) Linking size-based and trophic analysis of benthic community structure. Mar Ecol Prog Ser 226:77-5 CrossRef
    46. K?kela A, Crane J, Votier S, Furness RW, K?kela R (2006) Fatty acid signatures as indicators of diet in great skuas / Stercocarius skua, Shetland. Mar Ecol Prog Ser 319:297-10 CrossRef
    47. Kates M, Volcani BE (1966) Lipid components of diatoms. Biochim Biophys Acta 116:264-78 CrossRef
    48. Kirby RR, Beaugrand G, Lindley JA, Richardson AJ, Edwards M, Reid PC (2007) Climate effects and benthic–pelagic coupling in the North Sea. Mar Ecol Prog Ser 330:31-8 CrossRef
    49. Kürten B (2010) An end-to-end study of North Sea food webs. PhD Thesis, University of Newcastle upon Tyne
    50. Kürten B, Painting SJ, Struck U, Polunin NVC, Middelburg JJ (2011) Tracking seasonal changes in North Sea zooplankton trophic dynamics using stable isotopes. Biogeochemistry. doi:10.1007/s10533-011-9630-y
    51. Laevastu T (1963) Surface water types of the North Sea and their characteristics. Serial Atlas Mar Environ Folio 4:1-
    52. Lebour MV (1922) The food of plankton organisms. J Mar Biol Assoc UK 12:644-77 CrossRef
    53. Lee RF, Nevenzel JC, Paffenh?fer GA (1971) Importance of wax esters and other lipids in the marine food chain: phytoplankton and copepods. Mar Biol 9:99-08 CrossRef
    54. Lindley JA, Batten SD (2002) Long-term variability in the diversity of North Sea zooplankton. J Mar Biol Assoc UK 83:31-0
    55. Logan JM, Lutcavage ME (2010) Reply to Hussey et al.: the requirement for accurate diet-tissue discrimination factors for interpreting stable isotopes in sharks. Hydrobiologia 654:7-2 CrossRef
    56. MacAvoy SE, Arneson LS, Basset E (2006) Correlation of metabolism with tissue carbon and nitrogen turnover rate in small mammals. Oecologia 150:190-01 CrossRef
    57. Madurell T, Fanelli E, Cartes JE (2008) Isotopic composition of carbon and nitrogen of suprabenthic fauna in the NW Balearic Islands (western Mediterranean). J Mar Syst 71:336-45 CrossRef
    58. Mariotti A, Lancelot C, Billen G (1984) Natural isotopic composition of nitrogen as a tracer of origin for suspended organic matter in the Scheldt estuary. Geochim Cosmochim Acta 48:549-55 CrossRef
    59. McQuinn IH (2009) Pelagic fish outburst or suprabenthic habitat occupation: legacy of the Atlantic cod ( / Gadus morhua) collapse in eastern Canada. Can J Fish Aquat Sci 66:2256-262 CrossRef
    60. Mees J, Jones MB (1997) The hyperbenthos. Oceanogr Mar Biol Annu Rev 35:221-55
    61. Michener RH, Kaufman L (2007) Stable isotope ratios as tracers in marine food webs: an update. In: Lajtha K, Michener RH (eds) Stable isotopes in ecology and environmental science. Blackwell Scientific Publications, London, pp 238-82 CrossRef
    62. Michie MG (1982) Use of the Bray–Curtis similarity measure in cluster analysis of foraminiferal data. Math Geol 14:661-67 CrossRef
    63. Middelburg JJ, Herman PMJ (2007) Organic matter processing in tidal estuaries. Mar Chem 106:127-47 CrossRef
    64. Middelburg JJ, Nieuwenhuize J (1998) Carbon and nitrogen stable isotopes in suspended matter and sediments from the Schelde estuary. Mar Chem 60:217-25 CrossRef
    65. Mill AC, Sweeting CJ, Barnes C, Al-Habsi SH, MacNeil MA (2008) Mass spectrometer bias in stable isotope ecology. Limnol Oceanogr Methods 6:34-9 CrossRef
    66. Minagawa M, Wada E (1984) Stepwise enrichment of 15N along food chains: further evidence and the relation between / δ 15N and animal age. Geochim Cosmochim Acta 48:1135-140 CrossRef
    67. Mintenbeck K, Brey T, Jacob U, Knust R, Struck U (2008) How to account for the lipid effect on carbon stable-isotope ratio ( / δ 13C): sample treatment effects. J Fish Biol 72:815-30 CrossRef
    68. Nedwell DB, Dong LF, Sage A, Underwood GJC (2002) Variations of the nutrients loads to the mainland U.K. estuaries: correlation with catchment areas, urbanization and coastal eutrophication. Estuar Coast Shelf Sci 54:951-70 CrossRef
    69. Newell RC (1984) The biological role of detritus in the marine environment. In: Fasham MJR (ed) Flows of energy and materials in marine ecosystems—theory and practice. Plenum Press, New York, pp 317-43 CrossRef
    70. Ntiba MJ, Harding D (1993) The food and the feeding of the long rough dab, / Hippoglossoides platessoides (Fabricius 1780) in the North Sea. J Sea Res 31:189-99 CrossRef
    71. O’Reilly CM, Hecky RE, Cohen AS, Plisnier P-D (2002) Interpreting stable isotopes in food webs: recognizing the role of time averaging at different trophic levels. Limnol Oceanogr 47:306-09 CrossRef
    72. Otto L, Zimmermann JTF, Furnes GK, Mork MSR, Becker G (1990) Review of the physical oceanography of the North Sea. J Sea Res 26:161-38 CrossRef
    73. Pearce KF, Frid CLJ (1999) Coincident changes in four components of the North Sea ecosystem. J Mar Biol Assoc UK 79:183-85 CrossRef
    74. Perry AL, Low PJ, Ellis JR, Reynolds JD (2005) Climate change and distribution shifts in marine fishes. Science 308:1912-915 CrossRef
    75. Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Annu Rev Ecol Syst 18:293-20 CrossRef
    76. Phillips DL, Gregg JW (2001) Uncertainty in source partitioning using stable isotopes. Oecologia 127:171-79 CrossRef
    77. Phillips DL, Gregg JW (2003) Source partitioning using stable isotopes: coping with too many sources. Oecologia 136:261-69 CrossRef
    78. Pinnegar JK, Jennings GM, O’Brien CM, Polunin NVC (2002) Long-term changes in the trophic level of the Celtic Sea fish community and fish market price distribution. J Appl Ecol 39:377-90 CrossRef
    79. Pitt KA, Clement A-L, Connolly RM, Thibault-Botha D (2008) Predation by jellyfish on large and emergent zooplankton: implications for benthic–pelagic coupling. Estuar Coast Shelf Sci 76:827-33 CrossRef
    80. Polunin NVC, Morales-Nin B, Pawsey WE, Cartes JE, Pinnegar JK, Moranta J (2001) Feeding relationships in Mediterranean bathyal assemblages elucidated by stable nitrogen and carbon isotope data. Mar Ecol Prog Ser 220:13-3 CrossRef
    81. Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703-18 CrossRef
    82. Prins TC, Smaal AC (1990) Benthic–pelagic coupling: the release of inorganic nutrients by an intertidal bed of / Mytilus edulis. Trophic relationships in the marine environment proc. 24th Europ. mar. biol. symp., pp 89-03
    83. Raffaelli D, Bell E, Weithoff G, Matsumoto A, Cruz-Motta JJ, Kershaw P, Parker R, Parry D, Malcom J (2003) The ups and downs of benthic ecology: considerations of scale, heterogeneity and surveillance for benthic–pelagic coupling. J Exp Mar Biol Ecol 285-86:191-03
    84. Richardson AJ (2008) In hot water: zooplankton and climate change. ICES J Mar Sci 65:279-95 CrossRef
    85. Rolff C (2000) Seasonal variation in / δ 13C and / δ 15N of size fractionated plankton at a coastal station in the northern Baltic proper. Mar Ecol Prog Ser 203:7-5 CrossRef
    86. Shumway SE, Cucci TL, Newell RC, Yentsch CM (1985) Particle selection, ingestion, and absorption in filter-feeding bivalves. J Exp Mar Biol Ecol 91:77-2 CrossRef
    87. Sorbe JC (1983) Description d’un tra?neau destiné à l’échantillonnage quantitatif étagé de la faune suprabenthique néritique. Ann Inst Océanogr 59:117-26
    88. St. John M, Lund T (1996) Lipid biomarkers: linking the utilization of frontal plankton biomass to enhanced conditions of juvenile North Sea cod. Mar Ecol Prog Ser 131:75-5 CrossRef
    89. Stübing D, Hagen W (2003) Fatty acid biomarker ratios—suitable trophic indicators in Antarctic euphausiids? Polar Biol 26:774-82 CrossRef
    90. Sweeting CJ, Jennings S, Polunin NVC (2005) Variance in isotopic signatures as a descriptor of tissue turnover and degree of omnivory. Funct Ecol 19:777-84 CrossRef
    91. Tillin HM, Hiddink JG, Jennings S, Kaiser MJ (2006) Chronic bottom trawling alters the functional composition of benthic invertebrate communities on a sea-basin scale. Mar Ecol Prog Ser 318:31-5 CrossRef
    92. Vallet C, Dauvin J-C (2001) Biomass changes and bentho-pelagic transfers throughout the Benthic Boundary Layer in the English Channel. J Plankton Res 23:903-22 CrossRef
    93. van Beusekom JEE, Diel-Christiansen S (2009) Global change and the biogeochemistry of the North Sea: the possible role of phytoplankton and phytoplankton grazing. Int J Earth Sci 98:259-80
    94. van Leeuwen SM, van der Molen J, Ruardij P, Fernand L, Jickells T (2012) Modelling the contribution of deep chlorophyll maxima to annual primary production in the North Sea. Biogeochemistry. doi:10.1007/s10533-012-9704-5
    95. Van den Meersche K, van Rijswijk P, Soetaert K, Middelburg JJ (2009) Autochthonous and allochthonous contributions to mesozooplankton diet in a tidal river and estuary: integrating carbon and isotope fatty acid constraints. Limnol Oceanogr 54:62-4 CrossRef
    96. Vanderklift MA, Ponsard S (2003) Sources of variation in consumer-diet / δ 15N enrichment: a meta-analysis. Oecologia 136:169-82 CrossRef
    97. Viso A-C, Marty J-C (1993) Fatty acids from 28 marine microalgae. Phytochemistry 34:1521-533 CrossRef
    98. Voss M, Struck U (1997) Stable nitrogen and carbon isotopes as indicator of eutrophication of the Oder river (Baltic sea). Mar Chem 59:35-9 CrossRef
    99. Weston K, Fernand L, Mills DK, Delahunty R, Brown J (2005) Primary production in the deep chlorophyll maximum of the central North Sea. J Plankton Res 27:909-22 CrossRef
    100. Williams R, Conway DVP, Hunt HG (1994) The role of copepods in the planktonic ecosystem of mixed and stratified waters of the European shelf seas. Hydrobiologia 292/293:521-30 CrossRef
    101. Winter JE (1969) über den Einflu? der Nahrungskonzentration und anderer Faktoren auf Filtrierleistung und Nahrungsausnutzung der Muscheln / Arctica islandica und / Modiolus modiolus. Mar Biol 4:87-35 CrossRef
    102. Witbaard R (1997) Tree of the sea. PhD thesis, Rijksuniversiteit Groningen, 157 pp
    103. Witbaard R, Jansma E, Klaassen US (2003) Copepods link quahog growth to climate. J Sea Res 50:77-3 CrossRef
  • 作者单位:Benjamin Kürten (1)
    Inmaculada Frutos (2)
    Ulrich Struck (3)
    Suzanne J. Painting (4)
    Nicholas V. C. Polunin (5)
    Jack J. Middelburg (6) (7)

    1. Helmholtz Centre for Ocean Research Kiel | GEOMAR, Düsternbrooker Weg 20, 24105, Kiel, Germany
    2. Departamento de Zoología y Antropología Física, Universidad de Alcalá, 28871, Alcalá de Henares, Spain
    3. Museum für Naturkunde, Leibniz-Institut für Evolutions-und Biodiversit?tsforschung an der Humboldt-Universit?t zu Berlin, Invalidenstra?e 43, 10115, Berlin, Germany
    4. Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Pakefield Road, Lowestoft, NR33 0HT, UK
    5. School of Marine Science and Technology, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
    6. Centre for Estuarine and Marine Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 140, 4400 AC, Yerseke, The Netherlands
    7. Faculty of Geosciences, Utrecht University, PO Box 80021, 3508 TA, Utrecht, The Netherlands
  • ISSN:1573-515X
文摘
The trophodynamics of pelagic and benthic animals of the North Sea, North Atlantic shelf, were assessed using stable isotope analysis (SIA) of natural abundance carbon and nitrogen isotopes, lipid fingerprinting and compound-specific SIA (CSIA) of phospholipid-derived fatty acids (PLFAs). Zooplankton (z), epi- and supra-benthic macrofauna were collected in the Southern Bight, at the Oyster Grounds and at North Dogger, 111?km north of the Dogger Bank. The study included 22 taxonomic groups with particular reference to Mollusca (Bivalvia and Gastropoda) and Crustacea. Primary consumers (Bivalvia) were overall most 15N enriched in the southern North Sea (6.1- and more depleted in the Oyster Grounds (5.5- and at North Dogger (2.8- demonstrating differences in isotopic baselines for bivalve fauna between the study sites. Higher trophic levels also followed this trend. Over an annual cycle, consumers tended to exhibit 15N depletion during spring followed by 15N enriched signatures in autumn and winter. The observed seasonal changes of δ 15N were more pronounced for suspension feeders and deposit feeders (dfs) than for filter feeders (ffs). The position of animals in plots of δ 13C and δ 15N largely concurred with the expected position according to literature-based functional feeding groups. PLFA fingerprints of groups such as z were distinct from benthic groups, e.g. benthic ffs and dfs, and predatory macrobenthos. δ 13CPLFA signatures indicated similarities in 13C moiety sources that constituted δ 13CPLFA. Although functional groups of pelagic zooplankton and (supra-) benthic animals represented phylogenetically distinct consumer groups, δ 13CPLFA demonstrated that both groups were supported by pelagic primary production and relied on the same macronutrients such as PLFAs. Errors related to the static categorization of small invertebrates into fixed trophic positions defined by phylogenetic groupings rather than by functional feeding groups, and information on seasonal trophodynamic variability, may have implications for the reliability of numerical marine ecosystem models.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.