On color-preserving automorphisms of Cayley graphs of odd square-free order
详细信息    查看全文
文摘
An automorphism \(\alpha \) of a Cayley graph \(\mathrm{Cay}(G,S)\) of a group G with connection set S is color-preserving if \(\alpha (g,gs) = (h,hs)\) or \((h,hs^{-1})\) for every edge \((g,gs)\in E(\mathrm{Cay}(G,S))\). If every color-preserving automorphism of \(\mathrm{Cay}(G,S)\) is also affine, then \(\mathrm{Cay}(G,S)\) is a Cayley color automorphism (CCA) graph. If every Cayley graph \(\mathrm{Cay}(G,S)\) is a CCA graph, then G is a CCA group. Hujdurović et al. have shown that every non-CCA group G contains a section isomorphic to the non-abelian group \(F_{21}\) of order 21. We first show that there is a unique non-CCA Cayley graph \(\Gamma \) of \(F_{21}\). We then show that if \(\mathrm{Cay}(G,S)\) is a non-CCA graph of a group G of odd square-free order, then \(G = H\times F_{21}\) for some CCA group H, and \(\mathrm{Cay}(G,S) = \mathrm{Cay}(H,T)\mathbin {\square }\Gamma \).
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.