Role of mesenchymal cells in the natural history of ovarian cancer: a review
详细信息    查看全文
  • 作者:Cyril Touboul (1) (2)
    Fabien Vidal (3) (4) (5)
    Jennifer Pasquier (3) (4)
    Raphael Lis (4)
    Arash Rafii (3) (4)

    1. Department of Obstetrics and Gynecology
    ; H么pital Intercommunal de Cr茅teil ; Universit茅 Paris Est ; UPEC-Paris XII ; 12 avenue de Verdun ; 94000 ; Cr茅teil ; France
    2. UMR INSERM U965
    ; Angiogen猫se et Recherche translationnelle H么pital Lariboisi猫re ; 49 bd de la chapelle ; 75010 ; Paris ; France
    3. Stem Cell and Microenvironment Laboratory
    ; Weill Cornell Medical College in Qatar ; Education City ; Qatar Foundation ; Doha ; Qatar
    4. Department Genetic Medicine
    ; Weill Cornell Medical College ; Manhattan ; NY ; USA
    5. Department of Genetic Medicine and Obstetrics and Gynecology
    ; Stem Cell and Microenvironment Laboratory ; Weill Cornell Medical College in Qatar ; Qatar-Foundation PO ; 24144 ; Doha ; Qatar
  • 关键词:Mesenchymal stem cells ; Ovarian cancer ; Crosstalk ; Phenotypic modulation ; Dissemination ; Chemoresistance
  • 刊名:Journal of Translational Medicine
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:12
  • 期:1
  • 全文大小:3,163 KB
  • 参考文献:1. Siegel, R, Naishadham, D, Jemal, A (2012) Cancer statistics, 2012. CA Cancer J Clin 62: pp. 10-29
    2. Leminen, A, Auranen, A, Butzow, R, Hietanen, S, Komulainen, M, Kuoppala, T, Maenpaa, J, Puistola, U, Vuento, M, Vuorela, P, Yliskoski, M (2012) Update on current care guidelines: ovarian cancer. Duodeciml 128: pp. 1300-1301
    3. Stehman, FB, Brady, MF, Thigpen, JT, Rossi, EC, Burger, RA (2012) Cytokine use and survival in the first-line treatment of ovarian cancer: A Gynecologic Oncology Group Study. Gynecol Oncol 127: pp. 495-501
    4. Mobus, V, Wandt, H, Frickhofen, N, Bengala, C, Champion, K, Kimmig, R, Ostermann, H, Hinke, A, Ledermann, JA (2007) Phase III trial of high-dose sequential chemotherapy with peripheral blood stem cell support compared with standard dose chemotherapy for first-line treatment of advanced ovarian cancer: intergroup trial of the AGO-Ovar/AIO and EBMT. J Clin Oncol 25: pp. 4187-4193
    5. Bookman, MA, Darcy, KM, Clarke-Pearson, D, Boothby, RA, Horowitz, IR (2003) Evaluation of monoclonal humanized anti-HER2 antibody, trastuzumab, in patients with recurrent or refractory ovarian or primary peritoneal carcinoma with overexpression of HER2: a phase II trial of the Gynecologic Oncology Group. J Clin Oncol 21: pp. 283-290
    6. Noguera, IR, Sun, CC, Broaddus, RR, Branham, D, Levenback, CF, Ramirez, PT, Sood, AK, Coleman, RL, Gershenson, DM (2012) Phase II trial of imatinib mesylate in patients with recurrent platinum- and taxane-resistant low-grade serous carcinoma of the ovary, peritoneum, or fallopian tube. Gynecol Oncol 125: pp. 640-645
    7. Colombo, N, Kutarska, E, Dimopoulos, M, Bae, DS, Rzepka-Gorska, I, Bidzinski, M, Scambia, G, Engelholm, SA, Joly, F, Weber, D, El-Hashimy, M, Li, J, Souami, F, Wing, P, Engelholm, S, Bamias, A, Schwartz, P (2012) Randomized, open-label, phase III study comparing patupilone (EPO906) with pegylated liposomal doxorubicin in platinum-refractory or -resistant patients with recurrent epithelial ovarian, primary fallopian tube, or primary peritoneal cancer. J Clin Oncol 30: pp. 3841-3847
    8. Burger, RA, Brady, MF, Bookman, MA, Fleming, GF, Monk, BJ, Huang, H, Mannel, RS, Homesley, HD, Fowler, J, Greer, BE, Boente, M, Birrer, MJ, Liang, SX (2011) Incorporation of bevacizumab in the primary treatment of ovarian cancer. N Engl J Med 365: pp. 2473-2483
    9. Perren, TJ, Swart, AM, Pfisterer, J, Ledermann, JA, Pujade-Lauraine, E, Kristensen, G, Carey, MS, Beale, P, Cervantes, A, Kurzeder, C, du Bois, A, Sehouli, J, Kimmig, R, Stahle, A, Collinson, F, Essapen, S, Gourley, C, Lortholary, A, Selle, F, Mirza, MR, Leminen, A, Plante, M, Stark, D, Qian, W, Parmar, MK, Oza, AM (2011) A phase 3 trial of bevacizumab in ovarian cancer. N Engl J Med 365: pp. 2484-2496
    10. Ledermann, J, Harter, P, Gourley, C, Friedlander, M, Vergote, I, Rustin, G, Scott, C, Meier, W, Shapira-Frommer, R, Safra, T, Matei, D, Macpherson, E, Watkins, C, Carmichael, J, Matulonis, U (2012) Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer. N Engl J Med 366: pp. 1382-1392
    11. Jaaback, K, Johnson, N, Lawrie, TA (2011) Intraperitoneal chemotherapy for the initial management of primary epithelial ovarian cancer. Cochrane Database Syst Rev 11: pp. CD005340
    12. Poveda Velasco, A, Casado Herraez, A, Cervantes Ruiperez, A, Gallardo Rincon, D, Garcia Garcia, E, Gonzalez Martin, A, Lopez Garcia, G, Mendiola Fernandez, C, Ojeda Gonzalez, B (2007) Treatment guidelines in ovarian cancer. Clin Transl Oncol 9: pp. 308-316
    13. Burke, TW, Morris, M (1994) Secondary cytoreductive surgery for ovarian cancer. Obstet Gynecol Clin North Am 21: pp. 167-178
    14. Myers, ER, Havrilesky, LJ, Kulasingam, SL, Sanders, GD, Cline, KE, Gray, RN, Berchuck, A, McCrory, DC (2006) Genomic tests for ovarian cancer detection and management. Evid Rep Technol Assess (Full Rep) 145: pp. 1-100
    Integrated genomic analyses of ovarian carcinoma. Nature 474: pp. 609-615
    15. Farley, J, Ozbun, LL, Birrer, MJ (2008) Genomic analysis of epithelial ovarian cancer. Cell Res 18: pp. 538-548
    16. Malek, JA, Mery, E, Mahmoud, YA, Al-Azwani, EK, Roger, L, Huang, R, Jouve, E, Lis, R, Thiery, JP, Querleu, D, Rafii, A (2011) Copy number variation analysis of matched ovarian primary tumors and peritoneal metastasis. PLoS One 6: pp. e28561
    17. Joyce, JA, Pollard, JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9: pp. 239-252
    18. Udagawa, T, Wood, M (2010) Tumor-stromal cell interactions and opportunities for therapeutic intervention. Curr Opin Pharmacol 10: pp. 369-374
    19. Tlsty, TD, Coussens, LM (2006) Tumor stroma and regulation of cancer development. Annu Rev Pathol 1: pp. 119-150
    20. Coffelt, SB, Marini, FC, Watson, K, Zwezdaryk, KJ, Dembinski, JL, LaMarca, HL, Tomchuck, SL, Honer zu Bentrup, K, Danka, ES, Henkle, SL, Scandurro, AB (2009) The pro-inflammatory peptide LL-37 promotes ovarian tumor progression through recruitment of multipotent mesenchymal stromal cells. Proc Natl Acad Sci U S A 106: pp. 3806-3811
    21. Spaeth, EL, Dembinski, JL, Sasser, AK, Watson, K, Klopp, A, Hall, B, Andreeff, M, Marini, F (2009) Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS One 4: pp. e4992
    22. Martinet, L, Poupot, R, Mirshahi, P, Rafii, A, Fournie, JJ, Mirshahi, M, Poupot, M (2010) Hospicells derived from ovarian cancer stroma inhibit T-cell immune responses. Int J Cancer 126: pp. 2143-2152
    23. Pasquet, M, Golzio, M, Mery, E, Rafii, A, Benabbou, N, Mirshahi, P, Hennebelle, I, Bourin, P, Allal, B, Teissie, J, Mirshahi, M, Couderc, B (2010) Hospicells (ascites-derived stromal cells) promote tumorigenicity and angiogenesis. Int J Cancer 126: pp. 2090-2101
    24. Lis, R, Touboul, C, Mirshahi, P, Ali, F, Mathew, S, Nolan, DJ, Maleki, M, Abdalla, SA, Raynaud, CM, Querleu, D, Al-Azwani, E, Malek, J, Mirshahi, M, Rafii, A (2011) Tumor associated mesenchymal stem cells protects ovarian cancer cells from hyperthermia through CXCL12. Int J Cancer 128: pp. 715-725
    25. St Hill, CA (2012) Interactions between endothelial selectins and cancer cells regulate metastasis. Front Biosci 17: pp. 3233-3251
    26. Mierke, CT (2008) Role of the endothelium during tumor cell metastasis: is the endothelium a barrier or a promoter for cell invasion and metastasis?. J Biophys 2008: pp. 183516
    27. Cirri, P, Chiarugi, P (2012) Cancer-associated-fibroblasts and tumour cells: a diabolic liaison driving cancer progression. Cancer Metastasis Rev 31: pp. 195-208
    28. Kaplan, RN, Riba, RD, Zacharoulis, S, Bramley, AH, Vincent, L, Costa, C, MacDonald, DD, Jin, DK, Shido, K, Kerns, SA, Zhu, Z, Hicklin, D, Wu, Y, Port, JL, Altorki, N, Port, ER, Ruggero, D, Shmelkov, SV, Jensen, KK, Rafii, S, Lyden, D (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438: pp. 820-827
    29. Hanahan, D, Weinberg, RA (2011) Hallmarks of cancer: the next generation. Cell 144: pp. 646-674
    30. Schauer, IG, Zhang, J, Xing, Z, Guo, X, Mercado-Uribe, I, Sood, AK, Huang, P, Liu, J (2013) Interleukin-1beta promotes ovarian tumorigenesis through a p53/NF-kappaB-mediated inflammatory response in stromal fibroblasts. Neoplasia 15: pp. 409-420
    31. Lis, R, Touboul, C, Raynaud, CM, Malek, JA, Suhre, K, Mirshahi, M, Rafii, A (2012) Mesenchymal cell interaction with ovarian cancer cells triggers pro-metastatic properties. PLoS One 7: pp. e38340
    32. Touboul, C, Lis, R, Al Farsi, H, Raynaud, CM, Warfa, M, Althawadi, H, Mery, E, Mirshahi, M, Rafii, A (2013) Mesenchymal stem cells enhance ovarian cancer cell infiltration through IL6 secretion in an amniochorionic membrane based 3D model. J Transl Med 11: pp. 28
    33. Roodhart, JML, Daenen, LGM, Stigter, ECA, Prins, H-J, Gerrits, J, Houthuijzen, JM, Gerritsen, MG, Schipper, HS, Backer, MJG, van Amersfoort, M, Vermaat, JSP, Moerer, P, Ishihara, K, Kalkhoven, E, Beijnen, JH, Derksen, PWB, Medema, RH, Martens, AC, Brenkman, AB, Voest, EE (2011) Mesenchymal stem cells induce resistance to chemotherapy through the release of platinum-induced fatty acids. Cancer Cell 20: pp. 370-383
    34. Caplan, AI (1991) Mesenchymal stem cells. J Orthop Res 9: pp. 641-650
    35. Tavassoli, M, Crosby, WH (1968) Transplantation of marrow to extramedullary sites. Science 161: pp. 54-56
    36. Friedenstein, AJ, Deriglasova, UF, Kulagina, NN, Panasuk, AF, Rudakowa, SF, Luri谩, EA, Ruadkow, IA (1974) Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol 2: pp. 83-92
    37. Friedenstein, A Osteogenic stem cells in bone marrow. In: Heersche, J, Kanis, J eds. (1990) Bone and Mineral Research. Elsevier, Amsterdam, pp. 243-272
    38. da Silva Meirelles, L, Sand, TT, Harman, RJ, Lennon, DP, Caplan, AI (2009) MSC frequency correlates with blood vessel density in equine adipose tissue. Tissue Eng Part A 15: pp. 221-229
    39. Bernardo, ME, Locatelli, F, Fibbe, WE (2009) Mesenchymal stromal cells. Ann N Y Acad Sci 1176: pp. 101-117
    40. Raynaud, CM, Maleki, M, Lis, R, Ahmed, B, Al-Azwani, I, Malek, J, Safadi, FF, Rafii, A (2012) Comprehensive characterization of mesenchymal stem cells from human placenta and fetal membrane and their response to osteoactivin stimulation. Stem Cells Int 2012: pp. 658356
    41. da Silva Meirelles, L, Caplan, AI, Nardi, NB (2008) In search of the in vivo identity of mesenchymal stem cells. Stem Cells 26: pp. 2287-2299
    42. Crisan, M, Yap, S, Casteilla, L, Chen, CW, Corselli, M, Park, TS, Andriolo, G, Sun, B, Zheng, B, Zhang, L, Norotte, C, Teng, PN, Traas, J, Schugar, R, Deasy, BM, Badylak, S, Buhring, HJ, Giacobino, JP, Lazzari, L, Huard, J, Peault, B (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3: pp. 301-313
    43. Boado, RJ, Pardridge, WM (1994) Differential expression of alpha-actin mRNA and immunoreactive protein in brain microvascular pericytes and smooth muscle cells. J Neurosci Res 39: pp. 430-435
    44. Armulik, A, Abramsson, A, Betsholtz, C (2005) Endothelial/pericyte interactions. Circ Res 97: pp. 512-523
    45. Betsholtz, C, Lindblom, P, Gerhardt, H (2005) Role of pericytes in vascular morphogenesis. EXS 94: pp. 115-125
    46. Bianco, P, Robey, PG, Simmons, PJ (2008) Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell 2: pp. 313-319
    47. Prockop, DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276: pp. 71-74
    48. Caplan, AI (1994) The mesengenic process. Clin Plast Surg 21: pp. 429-435
    49. Pittenger, MF, Mackay, AM, Beck, SC, Jaiswal, RK, Douglas, R, Mosca, JD, Moorman, MA, Simonetti, DW, Craig, S, Marshak, DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284: pp. 143-147
    50. Kinnaird, T, Stabile, E, Burnett, MS, Lee, CW, Barr, S, Fuchs, S, Epstein, SE (2004) Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res 94: pp. 678-685
    51. Iso, Y, Spees, JL, Serrano, C, Bakondi, B, Pochampally, R, Song, YH, Sobel, BE, Delafontaine, P, Prockop, DJ (2007) Multipotent human stromal cells improve cardiac function after myocardial infarction in mice without long-term engraftment. Biochem Biophys Res Commun 354: pp. 700-706
    52. Valle-Prieto, A, Conget, PA (2010) Human mesenchymal stem cells efficiently manage oxidative stress. Stem Cells Dev 19: pp. 1885-1893
    53. Krosl, J, Austin, P, Beslu, N, Kroon, E, Humphries, RK, Sauvageau, G (2003) In vitro expansion of hematopoietic stem cells by recombinant TAT-HOXB4 protein. Nat Med 9: pp. 1428-1432
    54. Zhang, CC, Kaba, M, Ge, G, Xie, K, Tong, W, Hug, C, Lodish, HF (2006) Angiopoietin-like proteins stimulate ex vivo expansion of hematopoietic stem cells. Nat Med 12: pp. 240-245
    55. Willert, K, Brown, JD, Danenberg, E, Duncan, AW, Weissman, IL, Reya, T, Yates, JR, Nusse, R (2003) Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423: pp. 448-452
    56. Butler, JM, Nolan, DJ, Vertes, EL, Varnum-Finney, B, Kobayashi, H, Hooper, AT, Seandel, M, Shido, K, White, IA, Kobayashi, M, Witte, L, May, C, Shawber, C, Kimura, Y, Kitajewski, J, Rosenwaks, Z, Bernstein, ID, Rafii, S (2010) Endothelial cells are essential for the self-renewal and repopulation of notch-dependent hematopoietic stem cells. Cell Stem Cell 6: pp. 251-264
    57. Arai, F, Hirao, A, Ohmura, M, Sato, H, Matsuoka, S, Takubo, K, Ito, K, Koh, GY, Suda, T (2004) Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118: pp. 149-161
    58. Calvi, LM, Adams, GB, Weibrecht, KW, Weber, JM, Olson, DP, Knight, MC, Martin, RP, Schipani, E, Divieti, P, Bringhurst, FR, Milner, LA, Kronenberg, HM, Scadden, DT (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425: pp. 841-846
    59. Zhang, J, Niu, C, Ye, L, Huang, H, He, X, Tong, WG, Ross, J, Haug, J, Johnson, T, Feng, JQ, Harris, S, Wiedemann, LM, Mishina, Y, Li, L (2003) Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425: pp. 836-841
    60. Kollet, O, Dar, A, Shivtiel, S, Kalinkovich, A, Lapid, K, Sztainberg, Y, Tesio, M, Samstein, RM, Goichberg, P, Spiegel, A, Elson, A, Lapidot, T (2006) Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat Med 12: pp. 657-664
    61. Raimondi, G, Turnquist, HR, Thomson, AW (2007) Frontiers of immunological tolerance. Methods Mol Biol 380: pp. 1-24
    62. Kuo, YR, Chen, CC, Goto, S, Lin, PY, Wei, FC, Chen, CL (2012) Mesenchymal stem cells as immunomodulators in a vascularized composite allotransplantation. Clin Dev Immunol 2012: pp. 854846
    63. Le Blanc, K, Ringden, O (2007) Immunomodulation by mesenchymal stem cells and clinical experience. J Intern Med 262: pp. 509-525
    64. Strioga, M, Viswanathan, S, Darinskas, A, Slaby, O, Michalek, J (2012) Same or not the same? Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells. Stem Cells Dev 21: pp. 2724-2752
    65. Studeny, M, Marini, FC, Dembinski, JL, Zompetta, C, Cabreira-Hansen, M, Bekele, BN, Champlin, RE, Andreeff, M (2004) Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J Natl Cancer Inst 96: pp. 1593-1603
    66. Klopp, AH, Spaeth, EL, Dembinski, JL, Woodward, WA, Munshi, A, Meyn, RE, Cox, JD, Andreeff, M, Marini, FC (2007) Tumor irradiation increases the recruitment of circulating mesenchymal stem cells into the tumor microenvironment. Cancer Res 67: pp. 11687-11695
    67. Karnoub, AE, Dash, AB, Vo, AP, Sullivan, A, Brooks, MW, Bell, GW, Richardson, AL, Polyak, K, Tubo, R, Weinberg, RA (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449: pp. 557-563
    68. Dvorak, HF (1986) Tumors: wounds that do not heal. N Engl J Med 315: pp. 1650-1659
    69. Balkwill, F, Mantovani, A (2001) Inflammation and cancer: back to Virchow?. Lancet 357: pp. 539-545
    70. Vicari, AP, Caux, C (2002) Chemokines in cancer. Cytokine Growth Factor Rev 13: pp. 143-154
    71. Ginestier, C, Charafe-Jauffret, E, Birnbaum, D (2011) Breast tumor microenvironment: in the eye of the cytokine storm. Cell Cycle 10: pp. 2420-2421
    72. Luboshits, G, Shina, S, Kaplan, O, Engelberg, S, Nass, D, Lifshitz-Mercer, B, Chaitchik, S, Keydar, I, Ben-Baruch, A (1999) Elevated expression of the CC chemokine regulated on activation, normal T cell expressed and secreted (RANTES) in advanced breast carcinoma. Cancer Res 59: pp. 4681-4687
    73. Belperio, JA, Keane, MP, Arenberg, DA, Addison, CL, Ehlert, JE, Burdick, MD, Strieter, RM (2000) CXC chemokines in angiogenesis. J Leukoc Biol 68: pp. 1-8
    74. Vicari, AP, Ait-Yahia, S, Chemin, K, Mueller, A, Zlotnik, A, Caux, C (2000) Antitumor effects of the mouse chemokine 6Ckine/SLC through angiostatic and immunological mechanisms. J Immunol 165: pp. 1992-2000
    75. Muller, A, Homey, B, Soto, H, Ge, N, Catron, D, Buchanan, ME, McClanahan, T, Murphy, E, Yuan, W, Wagner, SN, Barrera, JL, Mohar, A, Verastegui, E, Zlotnik, A (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410: pp. 50-56
    76. Mashino, K, Sadanaga, N, Yamaguchi, H, Tanaka, F, Ohta, M, Shibuta, K, Inoue, H, Mori, M (2002) Expression of chemokine receptor CCR7 is associated with lymph node metastasis of gastric carcinoma. Cancer Res 62: pp. 2937-2941
    77. Malek, JA, Martinez, A, Mery, E, Ferron, G, Huang, R, Raynaud, C, Jouve, E, Thiery, JP, Querleu, D, Rafii, A (2012) Gene expression analysis of matched ovarian primary tumors and peritoneal metastasis. J Transl Med 10: pp. 121
    78. Wels, J, Kaplan, RN, Rafii, S, Lyden, D (2008) Migratory neighbors and distant invaders: tumor-associated niche cells. Genes Dev 22: pp. 559-574
    79. Abramsson, A, Lindblom, P, Betsholtz, C (2003) Endothelial and nonendothelial sources of PDGF-B regulate pericyte recruitment and influence vascular pattern formation in tumors. J Clin Invest 112: pp. 1142-1151
    80. McLean, K, Gong, Y, Choi, Y, Deng, N, Yang, K, Bai, S, Cabrera, L, Keller, E, McCauley, L, Cho, KR, Buckanovich, RJ (2011) Human ovarian carcinoma-associated mesenchymal stem cells regulate cancer stem cells and tumorigenesis via altered BMP production. J Clin Invest 121: pp. 3206-3219
    81. Tomchuck, SL, Zwezdaryk, KJ, Coffelt, SB, Waterman, RS, Danka, ES, Scandurro, AB (2008) Toll-like receptors on human mesenchymal stem cells drive their migration and immunomodulating responses. Stem Cells 26: pp. 99-107
    82. Cai, H, Xu, Y (2013) The role of LPA and YAP signaling in long-term migration of human ovarian cancer cells. Cell Commun Signal 11: pp. 31
    83. Jeon, ES, Moon, HJ, Lee, MJ, Song, HY, Kim, YM, Cho, M, Suh, D-S, Yoon, M-S, Chang, CL, Jung, JS, Kim, JH (2008) Cancer-derived lysophosphatidic acid stimulates differentiation of human mesenchymal stem cells to myofibroblast-like cells. Stem Cells 26: pp. 789-797
    84. Direkze, NC, Hodivala-Dilke, K, Jeffery, R, Hunt, T, Poulsom, R, Oukrif, D, Alison, MR, Wright, NA (2004) Bone marrow contribution to tumor-associated myofibroblasts and fibroblasts. Cancer Res 64: pp. 8492-8495
    85. Cho, JA, Park, H, Lim, EH, Kim, KH, Choi, JS, Lee, JH, Shin, JW, Lee, KW (2011) Exosomes from ovarian cancer cells induce adipose tissue-derived mesenchymal stem cells to acquire the physical and functional characteristics of tumor-supporting myofibroblasts. Gynecol Oncol 123: pp. 379-386
    86. Ko, SY, Barengo, N, Ladanyi, A, Lee, JS, Marini, F, Lengyel, E, Naora, H (2012) HOXA9 promotes ovarian cancer growth by stimulating cancer-associated fibroblasts. J Clin Invest 122: pp. 3603-3617
    87. Hall, B, Dembinski, J, Sasser, AK, Studeny, M, Andreeff, M, Marini, F (2007) Mesenchymal stem cells in cancer: tumor-associated fibroblasts and cell-based delivery vehicles. Int J Hematol 86: pp. 8-16
    88. Yeung, TL, Leung, CS, Wong, KK, Samimi, G, Thompson, MS, Liu, J, Zaid, TM, Ghosh, S, Birrer, MJ, Mok, SC (2013) TGF-beta modulates ovarian cancer invasion by upregulating CAF-derived versican in the tumor microenvironment. Cancer Res 73: pp. 5016-5028
    89. Zou, W, Machelon, V, Coulomb-L'Hermin, A, Borvak, J, Nome, F, Isaeva, T, Wei, S, Krzysiek, R, Durand-Gasselin, I, Gordon, A, Pustilnik, T, Curiel, DT, Galanaud, P, Capron, F, Emilie, D, Curiel, TJ (2001) Stromal-derived factor-1 in human tumors recruits and alters the function of plasmacytoid precursor dendritic cells. Nat Med 7: pp. 1339-1346
    90. Scotton, CJ, Wilson, JL, Scott, K, Stamp, G, Wilbanks, GD, Fricker, S, Bridger, G, Balkwill, FR (2002) Multiple actions of the chemokine CXCL12 on epithelial tumor cells in human ovarian cancer. Cancer Res 62: pp. 5930-5938
    91. Porcile, C, Bajetto, A, Barbieri, F, Barbero, S, Bonavia, R, Biglieri, M, Pirani, P, Florio, T, Schettini, G (2005) Stromal cell-derived factor-1alpha (SDF-1alpha/CXCL12) stimulates ovarian cancer cell growth through the EGF receptor transactivation. Exp Cell Res 308: pp. 241-253
    92. Kukreja, P, Abdel-Mageed, AB, Mondal, D, Liu, K, Agrawal, KC (2005) Up-regulation of CXCR4 expression in PC-3 cells by stromal-derived factor-1alpha (CXCL12) increases endothelial adhesion and transendothelial migration: role of MEK/ERK signaling pathway-dependent NF-kappaB activation. Cancer Res 65: pp. 9891-9898
    93. Peng, SB, Peek, V, Zhai, Y, Paul, DC, Lou, Q, Xia, X, Eessalu, T, Kohn, W, Tang, S (2005) Akt activation, but not extracellular signal-regulated kinase activation, is required for SDF-1alpha/CXCR4-mediated migration of epitheloid carcinoma cells. Mol Cancer Res 3: pp. 227-236
    94. Kryczek, I, Lange, A, Mottram, P, Alvarez, X, Cheng, P, Hogan, M, Moons, L, Wei, S, Zou, L, Machelon, V, Emilie, D, Terrassa, M, Lackner, A, Curiel, TJ, Carmeliet, P, Zou, W (2005) CXCL12 and vascular endothelial growth factor synergistically induce neoangiogenesis in human ovarian cancers. Cancer Res 65: pp. 465-472
    95. Orimo, A, Gupta, PB, Sgroi, DC, Arenzana-Seisdedos, F, Delaunay, T, Naeem, R, Carey, VJ, Richardson, AL, Weinberg, RA (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121: pp. 335-348
    96. Dalerba, P, Cho, RW, Clarke, MF (2007) Cancer stem cells: models and concepts. Annu Rev Med 58: pp. 267-284
    97. Clarke, MF, Dick, JE, Dirks, PB, Eaves, CJ, Jamieson, CH, Jones, DL, Visvader, J, Weissman, IL, Wahl, GM (2006) Cancer stem cells鈥損erspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res 66: pp. 9339-9344
    98. Zhang, S, Balch, C, Chan, MW, Lai, HC, Matei, D, Schilder, JM, Yan, PS, Huang, TH, Nephew, KP (2008) Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res 68: pp. 4311-4320
    99. Valent, P, Bonnet, D, De Maria, R, Lapidot, T, Copland, M, Melo, JV, Chomienne, C, Ishikawa, F, Schuringa, JJ, Stassi, G, Huntly, B, Herrmann, H, Soulier, J, Roesch, A, Schuurhuis, GJ, Wohrer, S, Arock, M, Zuber, J, Cerny-Reiterer, S, Johnsen, HE, Andreeff, M, Eaves, C (2012) Cancer stem cell definitions and terminology: the devil is in the details. Nat Rev Cancer 12: pp. 767-775
    100. Al-Hajj, M, Wicha, MS, Benito-Hernandez, A, Morrison, SJ, Clarke, MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100: pp. 3983-3988
    101. Liu, S, Ginestier, C, Ou, SJ, Clouthier, SG, Patel, SH, Monville, F, Korkaya, H, Heath, A, Dutcher, J, Kleer, CG, Jung, Y, Dontu, G, Taichman, R, Wicha, MS (2011) Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res 71: pp. 614-624
    102. Ginestier, C, Liu, S, Diebel, ME, Korkaya, H, Luo, M, Brown, M, Wicinski, J, Cabaud, O, Charafe-Jauffret, E, Birnbaum, D, Guan, JL, Dontu, G, Wicha, MS (2010) CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts. J Clin Invest 120: pp. 485-497
    103. Boiko, AD, Razorenova, OV, van de Rijn, M, Swetter, SM, Johnson, DL, Ly, DP, Butler, PD, Yang, GP, Joshua, B, Kaplan, MJ, Longaker, MT, Weissman, IL (2010) Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271. Nature 466: pp. 133-137
    104. Dalerba, P, Dylla, SJ, Park, IK, Liu, R, Wang, X, Cho, RW, Hoey, T, Gurney, A, Huang, EH, Simeone, DM, Shelton, AA, Parmiani, G, Castelli, C, Clarke, MF (2007) Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci U S A 104: pp. 10158-10163
    105. Collins, AT, Berry, PA, Hyde, C, Stower, MJ, Maitland, NJ (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65: pp. 10946-10951
    106. Bapat, SA, Mali, AM, Koppikar, CB, Kurrey, NK (2005) Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer. Cancer Res 65: pp. 3025-3029
    107. Tomao, F, Papa, A, Rossi, L, Strudel, M, Vici, P, Lo Russo, G, Tomao, S (2013) Emerging role of cancer stem cells in the biology and treatment of ovarian cancer: basic knowledge and therapeutic possibilities for an innovative approach. J Exp Clin Cancer Res 32: pp. 48
    108. Tomao, F, Papa, A, Strudel, M, Rossi, L, Lo Russo, G, Benedetti Panici, P, Ciabatta, FR, Tomao, S (2014) Investigating molecular profiles of ovarian cancer: an update on cancer stem cells. J Cancer 5: pp. 301-310
    109. Kusumbe, AP, Bapat, SA (2009) Cancer stem cells and aneuploid populations within developing tumors are the major determinants of tumor dormancy. Cancer Res 69: pp. 9245-9253
    110. Silva, IA, Bai, S, McLean, K, Yang, K, Griffith, K, Thomas, D, Ginestier, C, Johnston, C, Kueck, A, Reynolds, RK, Wicha, MS, Buckanovich, RJ (2011) Aldehyde dehydrogenase in combination with CD133 defines angiogenic ovarian cancer stem cells that portend poor patient survival. Cancer Res 71: pp. 3991-4001
    111. Kryczek, I, Liu, S, Roh, M, Vatan, L, Szeliga, W, Wei, S, Banerjee, M, Mao, Y, Kotarski, J, Wicha, MS, Liu, R, Zou, W (2012) Expression of aldehyde dehydrogenase and CD133 defines ovarian cancer stem cells. Int J Cancer 130: pp. 29-39
    112. Abubaker, K, Latifi, A, Luwor, R, Nazaretian, S, Zhu, H, Quinn, MA, Thompson, EW, Findlay, JK, Ahmed, N (2013) Short-term single treatment of chemotherapy results in the enrichment of ovarian cancer stem cell-like cells leading to an increased tumor burden. Mol Cancer 12: pp. 24
    113. Chau, WK, Ip, CK, Mak, AS, Lai, HC, Wong, AS (2013) c-Kit mediates chemoresistance and tumor-initiating capacity of ovarian cancer cells through activation of Wnt/beta-catenin-ATP-binding cassette G2 signaling. Oncogene 32: pp. 2767-2781
    114. Pasquier, J, Rafii, A (2013) Role of the microenvironment in ovarian cancer stem cell maintenance. Biomed Res Int 2013: pp. 630782
    115. Seo, JH, Jeong, KJ, Oh, WJ, Sul, HJ, Sohn, JS, Kim, YK, Cho do, Y, Kang, JK, Park, CG, Lee, HY (2010) Lysophosphatidic acid induces STAT3 phosphorylation and ovarian cancer cell motility: their inhibition by curcumin. Cancer Lett 288: pp. 50-56
    116. Waugh, DJ, Wilson, C (2008) The interleukin-8 pathway in cancer. Clin Cancer Res 14: pp. 6735-6741
    117. Paget, S (1889) The distribution of secondary growths in cancer of the breast. Lancet 8: pp. 98-101
    118. Tarin, D, Price, JE, Kettlewell, MGW, Souter, RG, Vass, ACR, Crossley, B (1984) Mechanisms of human tumor metastasis studied in patients with peritoneovenous shunts. Cancer Res 44: pp. 3584-3592
    119. Kaplan, RN, Rafii, S, Lyden, D (2006) Preparing the 鈥榮oil鈥? the Premetastatic Niche. Cancer Res 66: pp. 11089-11093
    120. Psaila, B, Lyden, D (2009) The metastatic niche: adapting the foreign soil. Nat Rev Cancer 9: pp. 285-293
    121. Erler, JT, Bennewith, KL, Cox, TR, Lang, G, Bird, D, Koong, A, Le, QT, Giaccia, AJ (2009) Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell 15: pp. 35-44
    122. Kenny, HA, Kaur, S, Coussens, LM, Lengyel, E (2008) The initial steps of ovarian cancer cell metastasis are mediated by MMP-2 cleavage of vitronectin and fibronectin. J Clin Invest 118: pp. 1367-1379
    123. Zhang, XH, Jin, X, Malladi, S, Zou, Y, Wen, YH, Brogi, E, Smid, M, Foekens, JA, Massague, J (2013) Selection of bone metastasis seeds by mesenchymal signals in the primary tumor stroma. Cell 154: pp. 1060-1073
    124. Cheng, B, Lu, W, Xiaoyun, W, YaXia, C, Xie, X (2009) Extra-abdominal metastases from epithelial ovarian carcinoma: an analysis of 20 cases. Int J Gynecol Cancer 19: pp. 611-614
    125. Cormio, G, Rossi, C, Cazzolla, A, Resta, L, Loverro, G, Greco, P, Selvaggi, L (2003) Distant metastases in ovarian carcinoma. Int J Gynecol Cancer 13: pp. 125-129
    126. Hudson, LG, Zeineldin, R, Stack, MS (2008) Phenotypic plasticity of neoplastic ovarian epithelium: unique cadherin profiles in tumor progression. Clin Exp Metastasis 25: pp. 643-655
    127. Veatch, AL, Carson, LF, Ramakrishnan, S (1994) Differential expression of the cell-cell adhesion molecule E-cadherin in ascites and solid human ovarian tumor cells. Int J Cancer 58: pp. 393-399
    128. Obermajer, N, Muthuswamy, R, Odunsi, K, Edwards, RP, Kalinski, P (2011) PGE (2)-induced CXCL12 production and CXCR4 expression controls the accumulation of human MDSCs in ovarian cancer environment. Cancer Res 71: pp. 7463-7470
    129. Zhu, GG, Risteli, J, Puistola, U, Kauppila, A, Risteli, L (1993) Progressive ovarian carcinoma induces synthesis of type I and type III procollagens in the tumor tissue and peritoneal cavity. Cancer Res 53: pp. 5028-5032
    130. Mustea, A, Pirvulescu, C, Konsgen, D, Braicu, EI, Yuan, S, Sun, P, Lichtenegger, W, Sehouli, J (2008) Decreased IL-1 RA concentration in ascites is associated with a significant improvement in overall survival in ovarian cancer. Cytokine 42: pp. 77-84
    131. Lafky, JM, Wilken, JA, Baron, AT, Maihle, NJ (2008) Clinical implications of the ErbB/epidermal growth factor (EGF) receptor family and its ligands in ovarian cancer. Biochim Biophys Acta 1785: pp. 232-265
    132. Salazar, H, Godwin, AK, Daly, MB, Laub, PB, Hogan, WM, Rosenblum, N, Boente, MP, Lynch, HT, Hamilton, TC (1996) Microscopic benign and invasive malignant neoplasms and a cancer-prone phenotype in prophylactic oophorectomies. J Natl Cancer Inst 88: pp. 1810-1820
    133. Chene, G, Penault-Llorca, F, Le Bouedec, G, Mishellany, F, Dauplat, MM, Jaffeux, P, Aublet-Cuvelier, B, Pouly, JL, Dechelotte, P, Dauplat, J (2009) Ovarian epithelial dysplasia and prophylactic oophorectomy for genetic risk. Int J Gynecol Cancer 19: pp. 65-72
    134. Nakayama, K, Nakayama, N, Kurman, RJ, Cope, L, Pohl, G, Samuels, Y, Velculescu, VE, Wang, TL, Shih, IM (2006) Sequence mutations and amplification of PIK3CA and AKT2 genes in purified ovarian serous neoplasms. Cancer Biol Ther 5: pp. 779-785
    135. Freedman, RS, Deavers, M, Liu, J, Wang, E (2004) Peritoneal inflammation - A microenvironment for Epithelial Ovarian Cancer (EOC). J Transl Med 2: pp. 23
    136. Rafii, A, Mirshahi, P, Poupot, M, Faussat, A-M, Simon, A, Ducros, E, Mery, E, Couderc, B, Lis, R, Capdet, J, Bergalet, J, Querleu, D, Dagonnet, F, Fourni, J-J, Marie, J-P, Pujade-Lauraine, E, Favre, G, Soria, J, Mirshahi, M (2008) Oncologic trogocytosis of an original stromal cells induces chemoresistance of ovarian tumours. PLoS One 3: pp. e3894
    137. Castells, M, Thibault, B, Mery, E, Golzio, M, Pasquet, M, Hennebelle, I, Bourin, P, Mirshahi, M, Delord, JP, Querleu, D, Couderc, B (2012) Ovarian ascites-derived Hospicells promote angiogenesis via activation of macrophages. Cancer Lett 326: pp. 59-68
    138. Castells, M, Milhas, D, Gandy, C, Thibault, B, Rafii, A, Delord, JP, Couderc, B (2013) Microenvironment mesenchymal cells protect ovarian cancer cell lines from apoptosis by inhibiting XIAP inactivation. Cell Death Dis 4: pp. e887
    139. Jemal, A, Siegel, R, Ward, E, Hao, Y, Xu, J, Murray, T, Thun, MJ (2008) Cancer statistics, 2008. CA Cancer J Clin 58: pp. 71-96
    140. Shostak, A, Chakrabarti, E, Hirszel, P, Maher, JF (1988) Effects of histamine and its receptor antagonists on peritoneal permeability. Kidney Int 34: pp. 786-790
    141. Muijsken, MA, Heezius, HJ, Verhoef, J, Verbrugh, HA (1991) Role of mesothelial cells in peritoneal antibacterial defence. J Clin Pathol 44: pp. 600-604
    142. Kenny, HA, Krausz, T, Yamada, SD, Lengyel, E (2007) Use of a novel 3D culture model to elucidate the role of mesothelial cells, fibroblasts and extra-cellular matrices on adhesion and invasion of ovarian cancer cells to the omentum. Int J Cancer 121: pp. 1463-1472
    143. Jones, LM, Gardner, MJ, Catterall, JB, Turner, GA (1995) Hyaluronic acid secreted by mesothelial cells: a natural barrier to ovarian cancer cell adhesion. Clin Exp Metastasis 13: pp. 373-380
    144. Kenny, H, Nieman, K, Mitra, A, Lengyel, E (2011) The first line of intra-abdominal metastatic attack: breaching the mesothelial cell layer. Cancer Disc 1: pp. 100-102
    145. Zhang, XY, Pettengell, R, Nasiri, N, Kalia, V, Dalgleish, AG, Barton, DP (1999) Characteristics and growth patterns of human peritoneal mesothelial cells: comparison between advanced epithelial ovarian cancer and non-ovarian cancer sources. J Soc Gynecol Investig 6: pp. 333-340
    146. Wang, E, Ngalame, Y, Panelli, MC, Nguyen-Jackson, H, Deavers, M, Mueller, P, Hu, W, Savary, CA, Kobayashi, R, Freedman, RS, Marincola, FM (2005) Peritoneal and subperitoneal stroma may facilitate regional spread of ovarian cancer. Clin Cancer Res 11: pp. 113-122
    147. Sako, A, Kitayama, J, Yamaguchi, H, Kaisaki, S, Suzuki, H, Fukatsu, K, Fujii, S, Nagawa, H (2003) Vascular endothelial growth factor synthesis by human omental mesothelial cells is augmented by fibroblast growth factor-2: possible role of mesothelial cell on the development of peritoneal metastasis. J Surg Res 115: pp. 113-120
    148. Casey, RC, Burleson, KM, Skubitz, KM, Pambuccian, SE, Oegema, TR, Ruff, LE, Skubitz, AP (2001) Beta 1-integrins regulate the formation and adhesion of ovarian carcinoma multicellular spheroids. Am J Pathol 159: pp. 2071-2080
    149. Gardner, MJ, Jones, LM, Catterall, JB, Turner, GA (1995) Expression of cell adhesion molecules on ovarian tumour cell lines and mesothelial cells, in relation to ovarian cancer metastasis. Cancer Lett 91: pp. 229-234
    150. Iwanicki, M, Davidowitz, R, Ng, M, Besser, A, Muranem, T, Merritt, M, Danuser, G, Ince, T, Brugge, J (2011) Ovarian cancer spheroids use myosin-generated force to clear the mesothelium. Cancer Disc 1: pp. 144-147
    151. Klopp, AH, Zhang, Y, Solley, T, Amaya-Manzanares, F, Marini, F, Andreeff, M, Debeb, B, Woodward, W, Schmandt, R, Broaddus, R, Lu, K, Kolonin, MG (2012) Omental adipose tissue-derived stromal cells promote vascularization and growth of endometrial tumors. Clin Cancer Res 18: pp. 771-782
    152. Bristow, RE, Tomacruz, RS, Armstrong, DK, Trimble, EL, Montz, FJ (2002) Survival effect of maximal cytoreductive surgery for advanced ovarian carcinoma during the platinum era: a meta-analysis. J Clin Oncol 20: pp. 1248-1259
    153. Pignata, S, Cannella, L, Leopardo, D, Pisano, C, Bruni, GS, Facchini, G (2011) Chemotherapy in epithelial ovarian cancer. Cancer Lett 303: pp. 73-83
    154. Audeh, MW, Carmichael, J, Penson, RT, Friedlander, M, Powell, B, Bell-McGuinn, KM, Scott, C, Weitzel, JN, Oaknin, A, Loman, N, Lu, K, Schmutzler, RK, Matulonis, U, Wickens, M, Tutt, A (2010) Oral poly (ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet 376: pp. 245-251
    155. Pfisterer, J, Ledermann, JA (2006) Management of Platinum-Sensitive Recurrent Ovarian Cancer. Semin Oncol 33: pp. 12-16
    156. Meads, MB, Gatenby, RA, Dalton, WS (2009) Environment-mediated drug resistance: a major contributor to minimal residual disease. Nat Rev Cancer 9: pp. 665-674
    157. Teicher, BA, Herman, TS, Holden, SA, Wang, YY, Pfeffer, MR, Crawford, JW, Frei, E (1990) Tumor resistance to alkylating agents conferred by mechanisms operative only in vivo. Science 247: pp. 1457-1461
    158. Pasquier, J, Galas, L, Boulange-Lecomte, C, Rioult, D, Bultelle, F, Magal, P, Webb, G, Le Foll, F (2012) Different modalities of intercellular membrane exchanges mediate cell-to-cell p-glycoprotein transfers in MCF-7 breast cancer cells. J Biol Chem 287: pp. 7374-7387
    159. Levchenko, A, Mehta, BM, Niu, X, Kang, G, Villafania, L, Way, D, Polycarpe, D, Sadelain, M, Larson, SM (2005) Intercellular transfer of P-glycoprotein mediates acquired multidrug resistance in tumor cells. Proc Natl Acad Sci U S A 102: pp. 1933-1938
    160. Chua, T, Robertson, G, Liauw, W, Farrell, R, Yan, T, Morris, D (2009) Intraoperative hyperthermic intraperitoneal chemotherapy after cytoreductive surgery in ovarian cancer peritoneal carcinomatosis: systematic review of current results. J Cancer Res Clin Oncol 135: pp. 1637-1645
    161. Pomel, C, Ferron, G, Lorimier, G, Rey, A, Lhomme, C, Classe, JM, Bereder, JM, Quenet, F, Meeus, P, Marchal, F, Morice, P, Elias, D (2010) Hyperthermic intra-peritoneal chemotherapy using Oxaliplatin as consolidation therapy for advanced epithelial ovarian carcinoma. Results of a phase II prospective multicentre trial. CHIPOVAC study. Eur J Surg Oncol 36: pp. 589-593
  • 刊物主题:Biomedicine general; Medicine/Public Health, general;
  • 出版者:BioMed Central
  • ISSN:1479-5876
文摘
Background Ovarian cancer is the deadliest gynaecologic malignancy. Despite progresses in chemotherapy and ultra-radical surgeries, this locally metastatic disease presents a high rate of local recurrence advocating for the role of a peritoneal niche. For several years, it was believed that tumor initiation, progression and metastasis were merely due to the changes in the neoplastic cell population and the adjacent non-neoplastic tissues were regarded as bystanders. The importance of the tumor microenvironment and its cellular component emerged from studies on the histopathological sequence of changes at the interface between putative tumor cells and the surrounding non-neoplastic tissues during carcinogenesis. Method In this review we aimed to describe the pro-tumoral crosstalk between ovarian cancer and mesenchymal stem cells. A PubMed search was performed for articles published pertaining to mesenchymal stem cells and specific to ovarian cancer. Results Mesenchymal stem cells participate to an elaborate crosstalk through direct and paracrine interaction with ovarian cancer cells. They play a role at different stages of the disease: survival and peritoneal infiltration at early stage, proliferation in distant sites, chemoresistance and recurrence at later stage. Conclusion The dialogue between ovarian and mesenchymal stem cells induces the constitution of a pro-tumoral mesencrine niche. Understanding the dynamics of such interaction in a clinical setting might propose new therapeutic strategies.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.