Remarkable enhancement of magnetization in the superconducting state of In/Ni nanoparticle composites by inhomogeneous spin anti-screening
详细信息    查看全文
  • 作者:Chi-Hung Lee (1)
    Chi-Yen Li (1)
    Sunil K. Karna (1)
    Erdembayalag Batsaikhan (1)
    Shih-Bin Liu (1)
    Chi-Hang Hung (1)
    Yang-Yuan Chen (2)
    Wen-Hsien Li (1)
  • 关键词:Anti ; screening ; Superconductivity ; In nanoparticle ; Magnetization
  • 刊名:Journal of Nanoparticle Research
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:16
  • 期:6
  • 全文大小:
  • 参考文献:1. Asulin I, Yuli O, Koren G, Millo O (2009) Evidence for induced magnetization in superconductor-ferromagnet heterostructures: a scanning tunneling spectroscopy study. Phys Rev B 79:174524. doi:10.1103/PhysRevB.79.174524 CrossRef
    2. Batallan F, Rosenman I, Sommers CB (1975) Band structure and Fermi surface of hcp ferromagnetic cobalt. Phys Rev B 11:545. doi:10.1103/PhysRevB.11.545 CrossRef
    3. Bergeret FS, García N (2004) Spin screening and antiscreening in a ferromagnet/superconductor heterojunction. Phys Rev B 70:052507. doi:10.1103/PhysRevB.70.052507 CrossRef
    4. Bergeret FS, Tokatly IV (2013) Singlet-triplet conversion and the long-range proximity effect in superconductor-ferromagnet structures with generic spin dependent fields. Phys Rev Lett 110:117003. doi:10.1103/PhysRevLett.110.117003 CrossRef
    5. Bergeret FS, Volkov AF, Efetov KB (2001) Long-range proximity effects in superconductor-ferromagnet structures. Phys Rev Lett 86:4096. doi:10.1103/PhysRevLett.86.4096 CrossRef
    6. Bergeret FS, Volkov AF, Efetov KB (2004) Induced ferromagnetism due to superconductivity in superconductor-ferromagnet structures. Phys Rev B 69:174504. doi:10.1103/PhysRevB.69.174504 CrossRef
    7. Bergeret FS, Volkov AF, Efetov KB (2005) Odd triplet superconductivity and related phenomena in superconductor-ferromagnet structures. Rev Mod Phys 77:1321. doi:10.1103/RevModPhys.77.1321 CrossRef
    8. Buzdin AI (2005) Proximity effects in superconductor-ferromagnet heterostructures. Rev Mod Phys 77:935. doi:10.1103/RevModPhys.77.935 CrossRef
    9. Callaway J, Wang CS (1973) Self-consistent calculation of energy bands in ferromagnetic nickel. Phys Rev B 7:1096. doi:10.1103/PhysRevB.7.1096 CrossRef
    10. Khaire TS, Khasawneh MA, Pratt WP Jr, Birge NO (2010) Observation of spin-triplet superconductivity in co-based josephson junctions. Phys Rev Lett 104:137002. doi:10.1103/PhysRevLett.104.137002 CrossRef
    11. Kharitonov MYu, Volkov AF, Efetov KB (2006) Oscillations of induced magnetization in superconductor-ferromagnet heterostructures. Phys Rev B 73:054511. doi:10.1103/PhysRevB.73.054511 CrossRef
    12. Lazar L, Westerholt K, Zabel H, Tagirov LR, Goryunov YuV, Garif’yanov NN, Garifullin IA (2000) Superconductor/ferromagnet proximity effect in Fe/Pb/Fe trilayers. Phys Rev B 61:3711. doi:10.11103/PhysRevB.61.3711 CrossRef
    13. Linder J, Yokoyama T, Sudb? A (2009) Theory of superconducting and magnetic proximity effect in S/F structures with inhomogeneous magnetization textures and spin-active interfaces. Phys Rev B 79:054523. doi:10.1103/PhysRevB.79.054523 CrossRef
    14. Mühlschlegel B, Scalapino DJ, Dento R (1972) Thermodynamic properties of superconducting particles. Phys Rev B 6:1767. doi:10.1103/PhysRevB.6.1767 CrossRef
    15. Robinson JWA, Piano S, Burnell G, Bell C, Blamire MG (2006) Critical Current oscillations in strong ferromagnetic π junctions. Phys Rev Lett 97:177003. doi:10.1103/PhysRevLett.97.177003 CrossRef
    16. Salikhov RI, Garifullin IA, Garif’yanov NN, Tagirov LR, Theis-Br?hl K, Westerholt K, Zabel H (2009) Experimental observation of the spin screening effect in superconductor/ferromagnet thin film heterostructures. Phys Rev Lett 102:087003 CrossRef
    17. Stahn J, Chakhalian J, Niedermayer Ch, Hoppler J, Gutberlet T, Voigt J, Treubel F, Habermeier H-U, Cristiani G, Keimer B, Bernhard C (2005) Magnetic proximity effect in perovskite superconductor/ferromagnet multilayers. Phys Rev B 71:140509(R). doi:10.1103/PhysRevB.71.140509 CrossRef
    18. Wakoh S, Yamashita J (1966) Band structure of ferromagnetic iron self-consistent procedure. J Phys Soc Jpn 21:1712. doi:10.1143/JPSJ21.1712 CrossRef
    19. Wu C-M, Karna SK, Liu S-B, Lee C-H, Wang C-W, Li W-H (2013) Inverse magnetic proximity effects in superconducting In–Ni and Sn–Ni nanoparticle assemblies. J Nanopart Res 15:1691. doi:10.1007/s11051-013-1691-5 CrossRef
    20. Xia J, Shelukhin V, Karpovski M, Kapitulnik A, Palevski A (2009) Inverse proximity effect in superconductor-ferromagnet bilayer structures. Phys Rev Lett 102:087004. doi:10.1103/PhysRevLett.102.087004 CrossRef
  • 作者单位:Chi-Hung Lee (1)
    Chi-Yen Li (1)
    Sunil K. Karna (1)
    Erdembayalag Batsaikhan (1)
    Shih-Bin Liu (1)
    Chi-Hang Hung (1)
    Yang-Yuan Chen (2)
    Wen-Hsien Li (1)

    1. Department of Physics, National Central University, Jhongli, 32001, Taiwan
    2. Institute of Physics, Academia Sinica, Taipei, 11529, Taiwan
  • ISSN:1572-896X
文摘
An enhancement of the superconducting transition temperature and development of an additional magnetic component in the superconducting state, initiated by inhomogeneous spin anti-screening are demonstrated in In/Ni nanoparticle composites. A significant 9?% increase of the superconducting transition temperature as a consequence of the magnetic proximities is detected. Unconventional cross-shaped magnetization hysteresis loops appear in densely packed assemblies, where magnetization increases, rather than decreases, upon entering the superconducting state in field-decreasing loops. Surprisingly, magnetization in the superconducting state can reach values as large as 3.5 times the saturation magnetization revealed in the normal state.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.