Transient expression and characterization of the antimicrobial peptide protegrin-1 in Nicotiana tabacum for control of bacterial and fungal mammalian pathogens
详细信息    查看全文
  • 作者:Omar Pati?o-Rodríguez (1)
    Benita Ortega-Berlanga (1)
    Yessica Y. Llamas-González (2)
    Mario A. Flores-Valdez (2)
    Areli Herrera-Díaz (1) (3)
    Roberto Montes-de-Oca-Luna (4)
    Schuyler S. Korban (5)
    ángel G. Alpuche-Solís (1)
  • 关键词:magnICON ; Alternative antibiotics ; TMV ; Tobacco ; Protegrin ; 1
  • 刊名:Plant Cell, Tissue and Organ Culture
  • 出版年:2013
  • 出版时间:October 2013
  • 年:2013
  • 卷:115
  • 期:1
  • 页码:99-106
  • 全文大小:343KB
  • 参考文献:1. Alvarez ML, Cardineau GA (2010) Prevention of bubonic and pneumonic plague using plant-derived vaccines. Biotechnol Adv 28:184-96 CrossRef
    2. Anthony KB, Fishman NO, Linkin DR, Gasink LB, Edelstein PH, Lautenbach E (2008) Clinical and microbiological outcomes of serious infections with multidrug-resistant gram-negative organisms treated with tigecycline. Clin Infect Dis 46:567-70 CrossRef
    3. Barlow PG, Svoboda P, Mackellar A, Nash AA, York IA, Pohl J, Davidson DJ, Donis RO (2011) Antiviral activity and increased host defense against influenza infection elicited by the human cathelicidin LL-37. PLoS ONE 6:e25333 CrossRef
    4. Bradford MM (1968) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248-54 CrossRef
    5. Chen J, Falla TJ, Liu H, Hurst MA, Fujii CA, Mosca DA, Embree JR, Loury DJ, Radel PA, Chang C, Gu L, Fiddes JC (2000) Development of protegrins for the treatment and prevention of oral mucositis: structure-activity relationships of synthetic protegrin analogues. Biopolymers 55(1):88-8 CrossRef
    6. Cho Y, Turner JS, Dinh N, Lehrer R (1998) Activity of protegrins against yeast-phase / Candida albicans. Infect Immun 66:2486-493
    7. Cole A (2005) Antimicrobial peptide microbicides targeting HIV. Protein Pept Lett 12:41-7 CrossRef
    8. Colgrave ML, Kotze AC, Huang YH, O’Grady J, Simonsen SM, Craik DJ (2008) Cyclotides: natural, circular plant peptides that possess significant activity against gastro-intestinal nematode parasites of sheep. Biochemistry 47:5581-589 CrossRef
    9. DeLucca AJ, Bland JM, Jacks TJ, Grimm C, Cleveland TJ (1997) Walsh, fungicidal activity of cecropin A. Antimicrob Agents Chemother 41:481-83
    10. Field D, Connor PM, Cotter PD, Hill C, Ross RP (2008) The generation of nisin variants with enhanced activity against specific gram positive pathogens. Mol Microbiol 69:218-30 CrossRef
    11. Findlay B, Zhanel GG, Schweizer F (2010) Cationic amphiphiles, a new generation of antimicrobials inspired by the natural antimicrobial peptide scaffold. Antimicrob Agents Chemother 54:4049-058 CrossRef
    12. Gleba Y, Klimyuk V, Marillonnet S (2005) Magnifection-a new platform for expressing recombinant vaccines in plants. Vaccine 23:2042-048 CrossRef
    13. Gleba Y, Klimyuk V, Marillonnet S (2007) Viral vectors for the expression of proteins in plants. Curr Opin Biotechnol 18:134-41 CrossRef
    14. Hulscher ME, Grol RP, van der Meer JW (2010) Antibiotic prescribing in hospitals: a social and behavioural scientific approach. Lancet Infect Dis 10:167-75 CrossRef
    15. Ireland DC, Wang CK, Wilson JA, Gustafson KR, Craik DJ (2008) Cyclotides as natural anti-HIV agents. Biopolymers 90:51-0 CrossRef
    16. Jenssen H, Hamill P, Hancock R (2006) Peptide antimicrobial agents. Clin Microbiol Rev 19(3):491-11 CrossRef
    17. Langham AA, Ahmad AS, Kaznessis YN (2008) On the nature of antimicrobial activity: a model for protegrin-1 pores. J Am Chem Soc 130:4338-346 CrossRef
    18. Lee SB, Li B, Jin S, Daniell H (2011) Expression and characterization of antimicrobial peptides retrocyclin-101 and protegrin-1 in chloroplasts to control viral and bacterial infections. Plant Biotechnol J 9(1):100-15 CrossRef
    19. Li Y, Geng Y, Song H, Zheng G, Huan L, Qiu B (2004) Expression of human lactoferrin N-lobe in / Nicotiana benthamiana with potato virus X-based agroinfiltration. Biotechnol Lett 26:953-57 CrossRef
    20. Marcos JF, Mun?oz A, Pérez-Payá E, Misra S, López-García B (2008) Identification and rational design of novel anti- microbial peptides for plant protection. Annu Rev of Phytopathol 46:273-01 CrossRef
    21. Marillonnet S, Giritch A, Gils M, Kandzia R, Klimyuk V, Gleba Y (2003) In planta engineering of viral RNA replicons. Efficient assembly by recombination of DNA modules delivered by Agrobacterium. PNAS 101:6852-857 CrossRef
    22. Matejuk A, Leng Q, Begum MD, Woodle MC, Scaria P, Chou ST, Mixson AJ (2010) Peptide-based antifungal therapies against emerging infections. Drugs Future 35(3):197
    23. Menassa R, Du C, Yin ZQ, Ma S, Poussier P, Brandle J, Jevnikar AM (2007) Therapeutic effectiveness of orally administered transgenic low-alkaloid tobacco expressing human interleukin-10 in a mouse model of colitis. Plant Biotechnol J 5(1):50-9 CrossRef
    24. Qu X, Harwig SL, Shafer W, Lehrer R (1997) Protegrin structure and activity against / Neisseria gonorrhoeae. Infect Immun 65:636-39
    25. Rosales-Mendoza S, Paz-Maldonado LMT, Govea-Alonso DO, Korban SS (2012) Engineering production of antihypertensive peptides in plants. Plant Cell Tiss Org Cult. doi:10.1007/s11240-012-0231-9
    26. Rymerson RT, Babiuk LA, Menassa R, Vanderbeld B, Brandle JE (2003) Immunogenicity of the capsid protein VP2 from porcine parvovirus expressed in low alkaloid transgenic tobacco. Mol Breed 11:267-76 CrossRef
    27. Saioth H, Kiba A, Nishihara M, Yamamura S, Suzuki K, Terauchi R (2000) Production of antimicrobial defensin in / Nicotiana benthamiana with a potato virus X vector. MPMI 14:111-15 CrossRef
    28. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York 78
    29. Staub JM, Garcia B, Graves J, Hajdukiewicz P, Hunter P, Nehra N, Paradkar V, Schlittler M, Carroll J, Spatola L, Ward D, Ye G, Russell D (2000) High-yield production of a human therapeutic protein in tobacco chloroplasts. Nat Biotechnol 18:333-38 CrossRef
    30. Steinberg DA, Hurst MA, Fuji CA, Kung AHC, Ho JF, Cheng FC, Loury DJ, Fiddes JC (1997) Protegrin-1: a broad-spectrum, rapidly microbicidal peptide with in vivo activity. Antimicrob Agents Chemother 41:1738-742
    31. Streatfield S (2007) Approaches to achieve high-level heterologous protein production in plants. Plant Biotechnol J 5:2-5 CrossRef
    32. Terras FRG, Schoofs HME, De Bolle MFC, Leuvent FV, Rees SB, Vanderleyden J, Cammute BPA, Breoekaert WF (1992) Analysis of two novel classes of plant antifungal proteins from Radish ( / Raphanus sativus L.) seeds. J Biol Chem 267:15301-5309
    33. Terras FRG, Eggermont K, Kovaleva V, Raikhel NV, Osborn RW, Kaster A, Rees SB, Torrekens S, Van Leuven F, Vanderleyden J, Cammue BPA, Broekaert WF (1995) Small cysteine-rich antifungal proteins from radish: their role in host defense. Plant Cell 7:573-88
    34. Tremblay R, Wang D, Jevnikar AM, Shengwu M (2010) Tobacco, a highly efficient green bioreactor for production of therapeutic proteins. Biotechnol Adv 28:214-21 CrossRef
    35. Von Haehling S, Morley JA, Anker SD (2010) An overview of sarcopenia: facts and numbers on prevalence and clinical impact. J Cachexia Sarcopenia Muscle 1:129-33 CrossRef
    36. WHO (2000). http://www.who.int/infectious-disease-report/2000/
    37. Willey JM, van der Donk WA (2007) Lantibiotics: peptides of diverse structure and function. Annu Rev Microbiol 61:477-01 CrossRef
    38. Yeman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55:27-5 CrossRef
    39. Zaiou M (2007) Multifunctional antimicrobial peptides: therapeutic targets in several human diseases. J Mol Med 85:317-29 CrossRef
  • 作者单位:Omar Pati?o-Rodríguez (1)
    Benita Ortega-Berlanga (1)
    Yessica Y. Llamas-González (2)
    Mario A. Flores-Valdez (2)
    Areli Herrera-Díaz (1) (3)
    Roberto Montes-de-Oca-Luna (4)
    Schuyler S. Korban (5)
    ángel G. Alpuche-Solís (1)

    1. División de Biología Molecular, IPICYT/Instituto Potosino de Investigación Científica y Tecnológica A. C., Camino a la Presa de San José 2055, 78216, San Luis Potosí, San Luis Potosí, Mexico
    2. Centro de Investigación y Asistencia en Tecnología y Dise?o del Estado de Jalisco (CIATEJ) A.C., Av. Normalistas 800, Col. Colinas de la Normal, 44270, Guadalajara, Jalisco, Mexico
    3. Helmholtz Zentrum München, German Research Center for Environmental Health, GmbH, Ingolst?dter Landstra?e 1, 85764, Oberschlei?heim-Neuherberg, Germany
    4. Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico
    5. Department of Natural Resources and Environmental Sciences, University of Illinois, 310 ERML, 1201?W. Gregory Drive, Urbana, IL, 61821, USA
文摘
Mammalian infectious diseases are widespread, and some are becoming difficult to control due to inappropriate use of antibiotics. This has contributed to incidence of bacterial strains with resistance to commonly used antibiotics. Thus, effective alternative antibiotics are essential for treatment of infectious diseases. Antimicrobial peptides are viable alternatives to address this problem. Among those, protegrin-1 (PG-1) is a broad-spectrum antimicrobial peptide. In this study, a magnICON was used to express the PG-1 peptide in Nicotiana tabacum, using a transient expression system mediated by Agrobacterium tumefaciens transfection. Reverse-transcriptase polymerase chain reaction (RT-PCR) and Northern blot analyses of transformed N. tabacum were employed to detect viral replicons, 290?bp and 6.1?kb. SDS/PAGE revealed presence of a band corresponding to the molecular weight of PG-1 (2.1?kDa), which was absent in wild-type N. tabacum. Antimicrobial/antifungal assays of protein extracts from transiently transformed N. tabacum were performed, and these demonstrated that PG-1 peptide activity in these plant tissues was viable and contributed to inhibition of 53.2?% of Klebsiella pneumoniae, 70.2?%, of Staphylococcus aureus, 56.6?% of Escherichia coli, 72?% of Mycobacterium bovis BCG, and 70?% of Candida albicans cultures. No inhibition of any of these fungal and bacterial pathogens was detected when wild-type N. tabacum extracts were used. Therefore, PG-1 produced in plant cells of infiltrated tobacco was active and controlled growth of several bacterial and fungal human pathogens.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.