Variation of phytoplankton assemblages of Kongsfjorden in early autumn 2012: a microscopic and pigment ratio-based assessment
详细信息    查看全文
  • 作者:Jane T. Bhaskar ; S. C. Tripathy ; P. Sabu…
  • 关键词:Phytoplankton abundance ; Species distribution ; Chlorophyll a ; Pigment ratio ; Spectrophotometric ; Kongsfjorden
  • 刊名:Environmental Monitoring and Assessment
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:188
  • 期:4
  • 全文大小:2,217 KB
  • 参考文献:Ardyna, M., Gosselin, M., Michel, C., Poulin, M., & Tremblay, J. É. (2011). Environmental forcing of phytoplankton community structure and function in the Canadian High Arctic: contrasting oligotrophic and eutrophic regions. Marine Ecology Progress Series, 442, 37–57.CrossRef
    Ardyna, M., Babin, M., Gosselin, M., Devred, E., Bélanger, S., Matsuoka, A., & Tremblay, J. É. (2013). Parameterization of vertical chlorophyll a in the Arctic Ocean: impact of the subsurface chlorophyll maximum on regional, seasonal, and annual primary production estimates. Biogeosciences, 10, 4383–4404.CrossRef
    Ardyna, M., Babin, M., Gosselin, M., Devred, E., Rainville, L. & Tremblay, J. É. (2014). Recent Arctic Ocean sea ice loss triggers novel fall phytoplankton blooms. Geophysical Research Letters, 41, doi:10.​1002/​2014GL061047 .
    Arrigo, K. R., Matrai, P. A., & Van Dijken, G. L. (2011). Primary productivity in the Arctic Ocean: impacts of complex optical properties and subsurface chlorophyll maxima on large-scale estimates. Journal of Geophysical Research, 116, C11022. doi:10.​1029/​2011JC007273 .CrossRef
    Barber, D. G., Lukovich, J. V., Keogak, J., Baryluk, S., Fortier, L., & Henry, G. H. R. (2008). The changing climate of the Arctic. Arctic, 61, 7–26.
    Brown, J. S. (1985). Three photosynthetic antenna porphyrins in a primitive green alga. Biochimica et Biophysica Acta, 807, 143–146.CrossRef
    Chisholm, S. W., Olson, R. J., Zettler, E. R., Goericke, R., Waterbury, J. B., & Welschmeyer, N. A. (1988). A novel free living prochlorophyte abundant in the oceanic euphotic zone. Nature, 334, 340–343.CrossRef
    Cottier, F., Tverberg, V., Inall, M., Svendsen, H., Nilsen, F., & Collin, G. (2005). Water mass modification in an Arctic fjord through cross-shelf exchange: the seasonal hydrography of Kongsfjorden, Svalbard. Journal of Geophysical Research, Oceans, 110, C12005. doi:10.​1029/​2004JC002757 .CrossRef
    Coupel, P., Jin, H. Y., Joo, M., Horner, R., Bouvet, H. A., Sicre, M. A., Gascard, J. C., Chen, J. F., Garçon, V., & Ruiz-Pino, D. (2012). Phytoplankton distribution in unusually low sea ice cover over the Pacific Arctic. Biogeosciences, 9, 4835–4850. doi:10.​5194/​bg-9-4835-2012 .CrossRef
    Coupel, P., Matsuoka, A., Ruiz-Pino, D., Gosselin, M., Marie, D., Tremblay, J. É., & Babin, M. (2015). Pigment signatures of phytoplankton communities in the Beaufort Sea. Biogeosciences, 12(4), 991–1006.
    de Boyer Montégut, C., Madec, G., Fischer, A. S., Lazar, A., & Iudicone, D. (2004). Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. Journal of Geophysical Research, Oceans, 109, C12003. doi:10.​1029/​2004JC002378 .CrossRef
    Eilertsen, H. C., Schei, B., & Taasen, J. P. (1981). Investigations on the plankton community of Bals-fjorden, Northern Norway. The phytoplankton 1976–1978. Abundance, species composition and succession. Sarsia, 66, 129–141.
    Eilertsen, H. C., Taasen, J. P., & Weslawski, J. M. (1989). Phytoplankton studies in the fjords of West Spitsbergen: physical environment and production in spring and summer. Journal of Plankton Research, 11, 1245–1260.CrossRef
    Falkowski, P. G., & LaRoche, J. (1991). Acclimation to spectral irradiance in algae. Journal of Phycology, 27, 8–14.CrossRef
    Falkowski, P. G., & Raven, J. A. (2007). Aquatic photosynthesis. Princeton: Princeton University Press.
    Falk-Petersen, S., Hopkins, C. C. E., & Sargent, J. R. (1990). Trophic relationships in the pelagic, Arctic food web. In M. Barnes & R. N. Gibson (Eds.), Trophic relationships in the marine environment (pp. 315–333). Aberdeen: Aberdeen University Press.
    Fujiwara, A., Hirawake, T., Suzuki, K., Imai, I., & Saitoh, S. I. (2014). Timing of sea ice retreat can alter phytoplankton community structure in the western Arctic Ocean. Biogeosciences, 11, 1705–1716.CrossRef
    Goericke, R., & Montoya, J. P. (1998). Estimating the contribution of microalgal taxa to chlorophyll a in the field—variations of pigment ratios under nutrient and light limited growth. Marine Ecology Progress Series, 137, 251–263.
    Grasshoff, K., Ehrhardt, M., & Kremling, K. (1983). Methods of seawater analysis. Germany: Weinheim.
    Hasle, G. R., & Heimdal, B. R. (1998). The net phytoplankton in Kongsfjorden, Svalbard, July 1988, with general remarks on species composition of arctic phytoplankton. Polar Research, 17, 31–52.CrossRef
    Hasle, G. R., & von Quillfeldt, C. H. (1996). Marine microalgae. Norsk Polarinstitutt. Skrifter, 198, 375–382.
    Hays, G. C., Richardson, A. J., & Robinson, C. (2005). Climate change and marine plankton. Trends in Ecology & Evolution, 20, 337–344.CrossRef
    Hegseth, E. N., & Tverberg, V. (2013). Effect of Atlantic water inflow on timing of the phytoplankton spring bloom in a high Arctic fjord (Kongsfjorden, Svalbard). Journal of Marine Systems, 113–114, 94–105.CrossRef
    Hill, V., Cota, G., & Stockwell, D. (2005). Spring and summer phytoplankton communities in the Chukchi and Eastern Beaufort Seas. Deep Sea Research, Part II, 52, 3369–3385.CrossRef
    Hill, V. J., Matrai, P. A., Olson, E., Suttles, S., Steele, M., Codispoti, L. A., & Zimmerman, R. C. (2013). Synthesis of integrated primary production in the Arctic Ocean: II. In situ and remotely sensed estimates. Progress in Oceanography, 110, 107–125.CrossRef
    Hodal, H., & Kristiansen, S. (2008). The importance of small-celled phytoplankton in spring blooms at the marginal ice zone in the northern Barents Sea. Deep Sea Research, Part II, 55, 2176–2185. doi:10.​1016/​j.​dsr2.​2008.​05.​012 .CrossRef
    Hodal, H., Falk-Petersen, S., Hop, H., Kristiansen, S., & Reigstad, M. (2012). Spring bloom dynamics in Kongsfjorden, Svalbard: nutrients, phytoplankton, protozoans and primary production. Polar Biology, 35, 191–203.CrossRef
    Hop, H., Pearson, T., Hegseth, E. N., Kovacs, K. M., Wiencke, C., et al. (2002). The marine ecosystem of Kongsfjorden, Svalbard. Polar Research, 21, 167–208.CrossRef
    Hop, H., Falk-Peterson, S., Svendsen, H., Kwasniewski, S., Pavlov, V., Pavlova, O., & Søreide, J. E. (2006). Physical and biological characteristics of the pelagic system across Fram Strait to Kongsfjorden. Progress in Oceanography, 71, 182–231.CrossRef
    Hop, H., Wiencke, C., Vogele, B., & Kovaltchouk, N. A. (2012). Species composition, zonation and biomass of marine benthic macroalgae in Kongsfjorden, Svalbard. Botanica Marina, 55(4), 399–414.CrossRef
    Iversen, K. R., & Seuthe, L. (2011). Seasonal microbial processes in a high latitude fjord (Kongsfjorden, Svalbard): I. Heterotrophic bacteria, picoplankton and nanoflagellates. Polar Biology, 34, 731–749.CrossRef
    Jeffrey, S. W. (1974). Profiles of photosynthetic pigments in the ocean using thin-layer chromatography. Marine Biology, 26, 101–110.CrossRef
    Jeffrey, S. W., & Wright, S. W. (1987). A new spectrally distinct component in preparations of chlorophyll c from the micro-alga Emiliania huxleyi (Prymnesiophyceae). Biochimica et Biophysica Acta, 894, 180–188.CrossRef
    Jodlowska, S., & Latala, A. (2011). The comparison of spectrophotometric method and high performance liquid chromatography in photosynthetic pigment analysis. OnLine Journal of Biological Sciences, 11, 63–69.CrossRef
    Keck, A., Wiktor, J., Hapter, R., & Nilsen, R. (1999). Phytoplankton assemblages related to physical gradients in an arctic glacier-fed fjord in summer. ICES Journal of Marine Science, 56, 203–214.CrossRef
    Kim, M., & Philpot, W. D. (2000). Ocean pigment algorithm based on the phytoplankton particle optics, CD ROM, Ocean Optics XV, Monaco, 1194.
    Latasa, M. (1995). Pigment composition of Heterocapsa sp. and Thalassiosira weissflogii growing in batch cultures under different irradiances. Scientia Marina, 59, 25–37.
    Lebour, M. (1978). The plankton diatoms of northern seas. Germany: Koenigstein.
    Leu, E., Falk-Petersen, S., Kwasniewski, S., Wulff, A., Edvardsen, K., & Hessen, D. O. (2006). Fatty acid dynamics during the spring bloom in a High Arctic fjord: importance of abiotic factors versus community changes. Canadian Journal of Fisheries and Aquatic Sciences, 63, 2760–2779. doi:10.​1139/​f06-159 .CrossRef
    Li, W. K. W., McLaughlin, F. A., Lovejoy, C., & Carmack, E. C. (2009). Smallest algae thrive as the Arctic Ocean freshens. Science, 326, 539.CrossRef
    Liaaen-Jensen, S., & Andrews, A. G. (1985). Analysis of carotenoids and related polyene pigments. In G. Gottschalk (Ed.), Methods in microbiology (pp. 235–283). New York: Academic.
    Lorenzen, C. J. (1981). Chlorophyll b in the eastern North Pacific Ocean. Deep-Sea Research, 28, 1049–1056.CrossRef
    MacLachlan, S. E., Cottier, F. R., Austin, W. E. N., & Howe, J. A. (2007). The salinity: d18O water relationship in Kongsfjorden, western Spitsbergen. Polar Research, 26, 160–167.CrossRef
    Menden-Deuer, S., & Lessard, E. J. (2000). Carbon to volume relationships for dinoflagellates, diatoms and other protist plankton. Limnology and Oceanography, 45, 569–579.CrossRef
    Meunier, A. (1910). Microplankton des Mers de Barents et de Kura. Duc d’Orleans Campagiie Arctique de 1907. Bulens, Brussels.
    Millie, D. F., Paerl, H. W., & Hurley, J. P. (1993). Microalgal pigment assessments using high-performance liquid chromatography—a synopsis of organismal and ecological applications. Canadian Journal of Fisheries and Aquatic Sciences, 50, 2513–2527.CrossRef
    Nelson, J. R., & Wakeham, S. G. (1989). A phytol-substituted chlorophyll c from Emiliana huxleyi (Prymnesiophvceae). Journal of Phycology, 25, 761–766.CrossRef
    Not, F., Massana, R., Latasa, M., Marie, D., Colson, C., Eikrem, W., Pedros-Alió, C., et al. (2005). Late summer community composition and abundance of photosynthetic picoeukaryotes in Norwegian and Barents seas. Limnology and Oceanography, 50, 1677–1686.CrossRef
    Okolodkov, Y. B. (1996). Net phytoplankton from the Barents Sea and the Svalbard waters (collected on the cruise of the research vessel “Geolog Fersman”, in July–September 1992) with emphasis on the Ceratium species as indicators of the Atlantic waters. Botanical Journal, 81, 1–9.
    Okolodkov, Y. B. (1997). Phytoplankton: studies on the biodiversity, taxonomy, community comparison and biogeography. In R. Stein, K. Fahl (Eds.), Scientific cruise report of the Arctic Expedition ARK-XIII/2 of RV Polarstern in 1997 (pp 53–59). Germany: Berichte zur Polarforschung.
    Okolodkov, Y. B., Hapter, R., & Semovski, S. V. (2000). Phytoplankton in Kongsfjorden, Spitsbergen, July 1996. Sarsia, 85, 1–8.CrossRef
    Ørbæk, J. B., Hisdal, V., & Svaasand, L. E. (1999). Radiation climate variability in Svalbard: surface and satellite observations. Polar Research, 18, 127–134.CrossRef
    Pettersen, R., Johnsen, G., Berge, J., & Hovland, E. K. (2011). Phytoplankton chemotaxonomy in waters around the Svalbard archipelago reveals high amounts of Chl b and presence of gyroxanthin-diester. Polar Biology, 34, 627–635.CrossRef
    Piquet, A. M.-T., van de Poll, W. H., Visser, R. J. W., Wiencke, C., Bolhuis, H., & Buma, A. G. J. (2014). Springtime phytoplankton dynamics in Arctic Krossfjorden and Kongsfjorden (Spitsbergen) as a function of glacier proximity. Biogeosciences, 11, 2263–2279.CrossRef
    Pond, S., & Pickard, G. L. (1978). Introductory dynamic oceanography. New York: Pergamon.
    Ritchie, R. J. (2006). Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynthesis Research, 89, 27–41. doi:10.​1007/​s11120-006-9065-9 .CrossRef
    Sakshaug, E. (2004). Primary and secondary production in the Arctic Seas. In R. Stein & R. W. Macdonald (Eds.), The organic carbon cycle in the Arctic Ocean (pp. 57–81). Germany: Springer.CrossRef
    Seuthe, L. (2011). Planktonic food webs in the Arctic ocean: structure and functioning in contrasting seasons and physical settings across Fram strait. PhD thesis, University of Tromso.
    Seuthe, L., Iversen, R. K., & Narcy, F. (2011). Microbial processes in a high latitude fjord (Kongsfjorden, Svalbard): II. Ciliates and dinoflagellates. Polar Biology, 34, 751–766.CrossRef
    Smayda, T. J. (1978). From phytoplankton to biomass. In A. Sournia (Ed.), Phytoplankton manual. UNESCO monographs on oceanographic methodology No.6, (pp 273–279). UNESCO, Paris.
    Ston, J., Kosakowska, A., Lotocka, M., & Lysiak-Pastuszak, E. (2002). Pigment composition in relation to phytoplankton community structure and nutrient content in the Baltic Sea. Oceanologia, 44, 419–437.
    Strickland, J. D. H., & Parsons, T. R. (1972). A practical handbook of seawater analysis (2nd ed.). Ottawa: Fisheries Research Board of Canada.
    Svendsen, H., Beszczynska-Møller, A., Hagen, J. O., Lefauconnier, B., Tverberg, V., Gerland, S., et al. (2002). The physical environment of Kongsfjorden-Krossfjorden, an Arctic fjord system in Svalbard. Polar Research, 21, 133–166.CrossRef
    Tomas, C. R. (1997). Identifying marine phytoplankton. San Diego: Academic.
    Tremblay, J.-E., & Gagnon, J. (2009). The effects of irradiance and nutrient supply on the productivity of Arctic waters: a perspective on climate change. In J. J. Nihoul & A. Kostianoy (Eds.), Influence of climate change on the changing arctic and sub-arctic conditions (pp. 73–93). Netherlands: Springer.CrossRef
    Tremblay, J.-E., Simpson, K., Martin, J., Miller, L., Gratton, Y., Barber, D., & Price, N. M. (2008). Vertical stability and the annual dynamics of nutrients and chlorophyll fluorescence in the coastal, southeast Beaufort Sea. Journal of Geophysical Research, 113, C07S90. doi:10.​1029/​2007JC004547 .CrossRef
    Utermohl, H. (1958). Zur vervollkommnung der quantitativen phytoplankton- methodic. Mitteilungen Internationale Vereinigung fur Theoretische und Angewandte Limnologie, 9, 1–38.
    Veldhuis, M. J. W., Colijn, F., & Admiraal, W. (1991). Phosphate utilization in Phaeocystis pouchetii (Haptophyceae). Marine Biology, 12, 53–62.
    Vidussi, F., Roy, S., Lovejoy, C., Gammelgaard, M., Thomsen, H., Booth, B., et al. (2004). Spatial and temporal variability of the phytoplankton community structure in the North Water Polynya, investigated using pigment biomarkers. Canadian Journal of Fisheries and Aquatic Sciences, 61, 2038–2052.CrossRef
    Wassmann, P., Duarte, C. M., Agustí, S., & Sejr, M. K. (2011). Footprints of climate change in the Arctic marine ecosystem. Global Change Biology, 17, 1235–1249.CrossRef
    Wessels, H., Hagen, W., Wiencke, C., & Karsten, U. (2004). Trophic interactions between macroalgae and herbivores from Kongsfjorden (Svalbard). In C. Wiencke (Ed.), The coastal ecosystem of Kongsfjorden, Svalbard (pp. 63–72). Synopsis of biological research performed at the Koldewey Station in the years 1991–2003.
    Wiktor, J. (1999). Early spring microplankton development under fast ice covered fjords of Svalbard, Arctic. Oceanologia, 41, 51–72.
  • 作者单位:Jane T. Bhaskar (1)
    S. C. Tripathy (1)
    P. Sabu (1)
    C. M. Laluraj (1)
    S. Rajan (1)

    1. ESSO-National Centre for Antarctic and Ocean Research, Ministry of Earth Sciences, Govt. of India, Headland Sada, Vasco da Gama, Goa, 403 804, India
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
    Ecology
    Atmospheric Protection, Air Quality Control and Air Pollution
    Environmental Management
  • 出版者:Springer Netherlands
  • ISSN:1573-2959
文摘
Phytoplankton species distribution and composition were determined by using microscopy and pigment ratios in the Kongsfjorden during early autumn 2012. Variation in sea surface temperature (SST) was minimal and matched well with satellite-derived SST. Nutrients were generally limited. Surface phytoplankton abundance ranged from 0.21 × 103 to 10.28 × 103 cells L−1. Phytoplankton abundance decreased with depth and did not show any significant correlation with chlorophyll a (chl a). Column-integrated phytoplankton cell counts (PCC) ranged from 94.3 × 106 cells m−2 (Kf4) to 13.7 × 106 cells m−2 (Kf5), while chl a was lowest at inner part of the fjord (6.3 mg m−2) and highest towards the mouth (24.83 mg m−2). Biomass from prymnesiophytes and raphidophytes dominated at surface and 10 m, respectively. The contribution of Bacillariophyceae to biomass was low. Generally, heterotrophic dinoflagellates were great in abundance (12.82 %) and ubiquitous in nature and were major contributors to biomass. Various chl pigments (chl b, chl c, phaeopigments (phaeo)) were measured to obtain pigment/chl a ratios to ascertain phytoplankton composition. Phaeo were observed only in inner fjord. Chl b:a ratios and microscopic observations indicated dominance of Chlorophyceae at greater depths than surface. Furthermore, microscopic observations confirmed dominance of chl c containing algae throughout the fjord. The study indicates that pigment ratios can be used as a tool for preliminary identification of major phytoplankton groups. However, under the presence of a large number of heterotrophic dinoflagellates such as Gymnodinium sp. and Gyrodinium sp., pigment signatures need to be supplemented by microscopic observations.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.