Development of a tight-binding model for Cu and its application to a Cu-heat-sink under irradiation
详细信息    查看全文
  • 作者:Wenyi Ding ; Haiyan He ; Bicai Pan
  • 刊名:Journal of Materials Science
  • 出版年:2015
  • 出版时间:September 2015
  • 年:2015
  • 卷:50
  • 期:17
  • 页码:5684-5693
  • 全文大小:1,013 KB
  • 参考文献:1.Kalinin G, Matera R (1998) Comparative analysis of copper alloys for the heat sink of plasma facing components in ITER. J Nucl Mater 258鈥?63:345鈥?50View Article
    2.Itoh Y, Takahashi M, Takano H (1996) Design of tungsten/copper graded composite for high heat flux components. Fusion Eng Des 31:279鈥?89View Article
    3.Zhou ZJ, Song SX, Du J, Zhong ZH, Ge CC (2007) Performance of W/Cu FGM based plasma facing components under high heat load test. J Nucl Mater 363:1309鈥?314View Article
    4.Diaz de la Rubia T, Averback RS, Benedek R, King WE (1987) Role of thermal spikes in energetic displacement. Phys Rev Lett 59:1930鈥?933View Article
    5.Diaz de la Rubia T, Guinan MW (1991) New mechanism of defect production in metals: a molecular-dynamics study of interstitial-dislocation-loop formation in high-energy displacement cascades. Phys Rev Lett 66:2766鈥?769View Article
    6.Foreman AJE, Phythian WJ, English CA (1992) The molecular dynamics simulation of irradiation damage cascades in copper using a many-body potential. Philos Mag A 66(5):671鈥?95View Article
    7.Foreman AJE, Phythian WJ, English CA (1994) Molecular dynamics simulation of irradiation damage cascades in copper using a many-body potential. Radiat Eff Defect Solid 129:25鈥?0View Article
    8.Bai XM, Voter AF, Hoagland RG, Nastasi M, Uberuaga BP (2010) Efficient annealing of radiation damage near grain boundaries via interstitial emission. Science 327:1631鈥?634View Article
    9.Nordlund K, Averback RS (1997) Point defect movement and annealing in collision cascades. Phys Rev B 56:2421鈥?431View Article
    10.Nordlund K, Ghaly M, Averback RS, Caturla M, Rubia TD, Tarus J (1998) Defect production in collision cascades in elemental semiconductors and fcc metals. Phys Rev B 57:7556鈥?570View Article
    11.Karolewski MA (2001) Tight-binding potentials for sputtering simulations with FCC and BCC metals. Radiat Eff Defect Solid 153:239鈥?55View Article
    12.Slater JC, Koster GF (1954) Simplified LCAO method for the periodic potential problem. Phys Rev 94:1498鈥?524View Article
    13.Tang MS, Wang CZ, Chan CT, Ho KM (1996) Environment-dependent tight-binding potential model. Phys Rev B 53:979鈥?82View Article
    14.Kwon I, Biswas R, Wang CZ, Ho KM, Soukoulis CM (1994) Transferable tight-binding models for silicon. Phys Rev B 49:7242鈥?250View Article
    15.Wang CZ, Pan BC, Ho KM (1999) An environment-dependent tight-binding potential for Si. J Phys 11:2043鈥?049
    16.Bernstein N, Mehl MJ, Papaconstantopoulos DA (2002) Nonorthogonal tight-binding model for germanium. Phys Rev B 66:075212View Article
    17.Li PF, Pan BC (2012) Transferable tight-binding potential for germanium. J Phys 24:305802
    18.Haas H, Wang CZ, F盲hnle M, Els盲sser C, Ho KM (1998) Environment-dependent tight-binding model for molybdenum. Phys Rev B 57:1461鈥?470View Article
    19.Mehl MJ, Papaconstantopoulos DA (1996) Applications of a tight-binding total-energy method for transition and noble metals: elastic constants, vacancies, and surfaces of monatomic metals. Phys Rev B 54:4519鈥?529View Article
    20.Cazorla C, Alf茅 D, Gillan MJ (2009) Melting properties of a simple tight-binding model of transition metals. I. The region of half-filled d-band. J Chem Phys 130:174707View Article
    21.Lekka CE, Bernstein N, Papaconstantopoulos DA, Mehl MJ (2009) Properties of bcc metals by tight-binding total energy simulations. Mater Sci Eng B 163:8鈥?6View Article
    22.Sha XW, Papaconstantopoulos DA, Mehl MJ, Bernstein N (2011) Tight-binding study of hcp Zn and Cd. Phys Rev B 84:184109View Article
    23.Nguyen-Manh D, Pettifor DG, Vitek V (2000) Analytic environment-dependent tight-binding bond integrals: application to \({\rm MoSi}_{2}\) . Phys Rev Lett 85:4136鈥?139View Article
    24.Nilsson G, Rolandson S (1973) Lattice dynamics of copper at 80 K. Phys Rev B 7:2393鈥?400View Article
    25.Brandes EA (1983) Smithells metals reference book, 6th edn. Butterworths, London
    26.David RL (2009) Handbook of chemistry and physics, 90th edn. CRC Press, Boca Raton
    27.Ziegler JF, Biersack JP, Littmark U (1985) The stopping and range of ions in matter. Pergamon, New York, pp 93鈥?29
    28.Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558鈥?61View Article
    29.Kresse G, Furthm眉ller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169鈥?1186View Article
    30.Bl枚chl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953鈥?7979View Article
    31.Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46:6671鈥?687View Article
    32.Siegel RW (1978) Vacancy concentrations in metals. J Nucl Mater 69鈥?0:117鈥?46View Article
    33.Balluffi RW (1978) Vacancy defect mobilities and binding energies obtained from annealing studies. J Nucl Mater 69鈥?0:240鈥?63View Article
    34.Ehrhart P (1978) The configuration of atomic defects as determined from scattering studies. J Nucl Mater 69鈥?0:200鈥?14View Article
    35.Lam NQ, Degens L, Doan NV (1983) Calculations of the properties of self-interstitials and vacancies in the face-centred cubic metals Cu, Ag and Au. J Phys 13:2503鈥?516View Article
    36.Lee BJ, Shim JH, Baskes MI (2003) Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method. Phys Rev B 68:144112View Article
    37.Cleri F, Rosato V (1993) Tight-binding potentials for transition metals and alloys. Phys Rev B 48:22鈥?3View Article
    38.Li XC, Shu X, Liu YN, Gao F, Lu GH (2011) Modified analytical interatomic potential for a WH system with defects. J Nucl Mater 408:12鈥?7View Article
    39.S茅bastien LR, Valeri P (2015) Mean square displacement of atoms-M.S.D. http://鈥媔saacs.鈥媠ourceforge.鈥媙et/鈥媝hys/鈥媘sd.鈥媓tml . Accessed 3 Jan 2015
    40.Carter CB, Ray ILF (1977) On the stacking-fault energies of copper alloys. Philos Mag 35:189鈥?00View Article
    41.Heino P, Perondi L, Kaski K, Ristolainen E (1999) Stacking-fault energy of copper from molecular-dynamics simulations. Phys Rev B 60:14625鈥?4631View Article
    42.Tyson WR, Miller WA (1977) Surface free energies of solid metals: estimation from liquid surface tension measurements. Surf Sci 62:267鈥?76View Article
    43.Spasov VA, Lee TH, Ervin KM (2000) Threshold collision-induced dissociation of anionic copper clusters and copper cluster monocarbonyls. J Chem Phys 112:1713鈥?720View Article
    44.Jug K, Zimmermann B, Calaminici P, K枚ster AM (2002) Structure and stability of small copper clusters. J Chem Phys 116:4497鈥?507View Article
    45.Krasheninnikov AV, Nordlund K (2010) Ion and electron irradiation-induced effects in nanostructured materials. J Appl Phys 107:071301View Article
    46.Berendsen HJC, Postma JPM, Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684鈥?690View Article
    47.Ghaly M, Averback RS (1994) Effect of viscous flow on ion damage near solid surfaces. Phys Rev Lett 72:364鈥?67View Article
    48.Tang M, Colombo L, Zhu J, Rubia TD (1997) Intrinsic point defects in crystalline silicon: tight-binding molecular dynamics studies of self-diffusion, interstitial-vacancy recombination, and formation volumes. Phys Rev B 55:14279鈥?4289View Article
    49.Caturla MJ, Rubia TD, Marques LA, Gilmer GH (1996) Ion-beam processing of silicon at keV energies: a molecular-dynamics study. Phys Rev B 54:16683鈥?6695View Article
    50.Scheidemantel TJ, Ambrosch-Draxl C, Thonhauser T, Badding JV, Sofo JO (2003) Transport coefficients from first-principles calculations. Phys Rev B 68:125210View Article
    51.Madsen GKH (2006) Automated search for new thermoelectric materials: the case of LiZnSb. J Am Chem Soc 128:12140鈥?2146View Article
    52.Gao X, Uehara K, Klug DD, Patchkovskii S, Tse JS, Tritt TM (2005) Theoretical studies on the thermopower of semiconductors and low-band-gap crystalline polymers. Phys Rev B 72:125202View Article
  • 作者单位:Wenyi Ding (1)
    Haiyan He (1)
    Bicai Pan (1)

    1. Key Laboratory of Strongly-Coupled Quantum Matter Physics, Department of Physics and Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, 230026, Anhui, People鈥檚 Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Materials Science
    Characterization and Evaluation Materials
    Polymer Sciences
    Continuum Mechanics and Mechanics of Materials
    Crystallography
    Mechanics
  • 出版者:Springer Netherlands
  • ISSN:1573-4803
文摘
An environment-dependent tight-binding potential model for copper within the framework of quantum theory is developed. Our benchmark calculations indicate that this model has good performance in describing the elastic property, the stability and the vibrational property of bulk copper, as well as in handling the clusters, the surfaces and the defective Cu systems. By combining this model with molecular dynamics, we study how the evolution of structural defects arising from the irradiation of the energetic particles influences the mechanical and the thermal properties of the copper-heat-sinks in fusion reactors. Based on our simulations, the heat blockade in the irradiated Cu-heat-sinks is predicted. This finding is valuable for the development of wall materials in fusion reactors.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.