Mathematical modelling of the degradation behaviour of biodegradable metals
详细信息    查看全文
文摘
A mathematical model for the biodegradation of magnesium is developed in this study to inspect the corrosion behaviour of biodegradable implants. The aim of this study was to provide a suitable framework for the assessment of the corrosion rate of magnesium which includes the process of formation/dissolution of the protective film. The model is intended to aid the design of implants with suitable geometries. The level-set method is used to follow the changing geometry of the implants during the corrosion process. A system of partial differential equations is formulated based on the physical and chemical processes that occur at the implant-medium boundary in order to simulate the effect of the formation of a protective film on the degradation rate. The experimental data from the literature on the corrosion of a high-purity magnesium sample immersed in simulated body fluid is used to calibrate the model. The model is then used to predict the degradation behaviour of a porous orthopaedic implant. The model successfully reproduces the precipitation of the corrosion products on the magnesium surface and the effect on the degradation rate. It can be used to simulate the implant degradation and the formation of the corrosion products on the surface of biodegradable magnesium implants with complex geometries.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.