Membrane protein reconstitution for functional and structural studies
详细信息    查看全文
  • 作者:LiGuo Wang (1)
    LiGe Tonggu (1)

    1. Department of Biological Structure
    ; University of Washington ; Seattle ; Washington ; 98195 ; USA
  • 关键词:membrane protein ; reconstitution ; Ca2+ signaling ; Ca2+ mediators ; Ca2+ ; regulated enzymes ; Ca2+ transducers
  • 刊名:Science China Life Sciences
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:58
  • 期:1
  • 页码:66-74
  • 全文大小:1,684 KB
  • 参考文献:1. Rigaud JL, Pitard B, Levy D. Reconstitution of membrane proteins into liposomes: application to energy-transducing membrane proteins. Biochim Biophys Acta Bioenerg, 1995, 1231: 223鈥?46 CrossRef
    2. Weinglass AB, Whitelegge JP, Kaback HR. Integrating mass spectrometry into membrane protein drug discovery. Curr Opin Drug Dis Dev, 2004, 7: 589鈥?99
    3. Long SB, Tao X, Campbell EB, MacKinnon R. Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature, 2007, 450: 376鈥?83 CrossRef
    4. Gonen T, Cheng Y, Sliz P, Hiroaki Y, Fujiyoshi Y, Harrison SC, Walz T. Lipid-protein interactions in double-layered two-dimensional AQP0 crystals. Nature, 2005, 438: 633鈥?38 CrossRef
    5. Schmidt D, Jiang QX, MacKinnon R. Phospholipids and the origin of cationic gating charges in voltage sensors. Nature, 2006, 444: 775鈥?79 CrossRef
    6. Tanaka JC, Eccleston JF, Barchi RL. Cation selectivity characteristics of the reconstituted voltage-dependent sodium channel purified from rat skeletal muscle sarcolemma. J Biol Chem, 1983, 258: 7519鈥?526
    7. Brohawn SG, del M谩rmol J, MacKinnon R. Crystal structure of the human K2P TRAAK, a lipid- and mechano-sensitive K+ ion channel. Science, 2012, 335: 436鈥?41 CrossRef
    8. Wang L, Sigworth FJ. Structure of the BK potassium channel in a lipid membrane from electron cryomicroscopy. Nature, 2009, 461: 292鈥?95 CrossRef
    9. Nakao S, Ebata H, Hamamoto T, Kagawa Y, Hirata H. Solubilization and reconstitution of voltage-dependent calcium-channel from bovine cardiac-muscle. Ca2+ influx assay using the fluorescent dye Quin2. Biochim Biophys Acta, 1988, 944: 337鈥?43 CrossRef
    10. Ramos-Franco J, Bare D, Caenepeel S, Nani A, Fill M, Mignery G. Single-channel function of recombinant type 2 inositol 1,4,5-trisphosphate receptor. Biophys J, 2000, 79: 1388鈥?399 CrossRef
    11. Kagawa Y, Racker E. Partial resolution of the enzymes catalyzing oxidative phosphorylation: XXV. Reconstitution of vesicles catalyzing 32Pi-adenosine triphosphate exchange. J Biol Chem, 1971, 246: 5477鈥?487
    12. Hinkle PC, Kim JJ, Racker E. Ion Transport and respiratory control in vesicles formed from cytochrome oxidase and phospholipids. J Biol Chem, 1972, 247: 1338鈥?339
    13. Racker E. Reconstitution of a calcium pump with phospholipids and a purified Ca++-adenosine triphosphatase from sarcoplasmic reticulum. J Biol Chem, 1972, 247: 8198鈥?200
    14. Shen HH, Lithgow T, Martin LL. Reconstitution of membrane proteins into model membranes: seeking better ways to retain protein activities. Int J Mol Sci, 2013, 14: 1589鈥?607 CrossRef
    15. Ritchie TK, Grinkova YV, Bayburt TH, Denisov IG, Zolnerciks JK, Atkins WM, Sligar SG. Chapter 11 Reconstitution of membrane proteins in phospholipid bilayer nanodiscs. Methods Enzymol, 2009, 464: 211鈥?31 CrossRef
    16. N盲svik 脰jemyr L, Von Ballmoos C, Gennis RB, Sligar SG, Brzezinski P. Reconstitution of respiratory oxidases in membrane nanodiscs for investigation of proton-coupled electron transfer. FEBS Lett, 2012, 586: 640鈥?45 CrossRef
    17. Shnyrova AV, Zimmerberg J. Reconstitution of membrane budding with unilamellar vesicles. Methods Enzymol, 2009, 464: 55鈥?5 CrossRef
    18. Seddon AM, Curnow P, Booth PJ. Membrane proteins, lipids and detergents: not just a soap opera. Biochim Biophys Acta Biomembr, 2004, 1666: 105鈥?17 CrossRef
    19. Pagano A, Spiess M. Reconstitution of Rab4-dependent vesicle formation / in vitro. Methods Enzymol, 2005, 403: 81鈥?2 CrossRef
    20. Higgins MK, McMahon HT. / In vitro reconstitution of discrete stages of dynamin-dependent endocytosis. Methods Enzymol, 2006, 404: 597鈥?11 CrossRef
    21. Kano F, Takenaka K, Murata M. Reconstitution of Golgi disassembly by mitotic / Xenopus egg extract in semi-intact MDCK cells. Methods Mol Biol (Clifton, NJ), 2006, 322: 357鈥?65 CrossRef
    22. Ollivon M, Lesieur S, Grabielle-Madelmont C, Paternostre M. Vesicle reconstitution from lipid-detergent mixed micelles. Biochim Biophys Acta Biomembr, 2000, 1508: 34鈥?0 CrossRef
    23. Le Maire M, Champeil P, M酶ller JV. Interaction of membrane proteins and lipids with solubilizing detergents. Biochim Biophys Acta Biomembr, 2000, 1508: 86鈥?11 CrossRef
    24. Garavito RM, Ferguson-Miller S. Detergents as tools in membrane biochemistry. J Biol Chem, 2001, 276: 32403鈥?2406 CrossRef
    25. Gohon Y, Popot JL. Membrane protein-surfactant complexes. Curr Opin Colloid Interface Sci, 2003, 8: 15鈥?2 CrossRef
    26. Israelachvili JN. Intermolecular and Surface Forces. Burlington, MA: Academic Press, 2011
    27. L茅vy D, Gulik A, Bluzat A, Rigaud JL. Reconstitution of the sarcoplasmic reticulum Ca2+-ATPase: mechanisms of membrane protein insertion into liposomes during reconstitution procedures involving the use of detergents. Biochim Biophys Acta Biomembr, 1992, 1107: 283鈥?98 CrossRef
    28. Young HS, Rigaud JL, Lacapere JJ, Reddy LG, Stokes DL. How to make tubular crystals by reconstitution of detergent-solubilized Ca2+-ATPase. Biophys J, 1997, 72: 2545鈥?558 CrossRef
    29. Seras-Cansell M, Ollivon M, Lesieur S. Generation of non-ionic monoalkyl amphiphile-cholesterol vesicles: evidence of membrane impermeability to octyl glucoside. STP Pharma Sci, 1996, 6: 12鈥?0
    30. Holloway PW. A simple procedure for removal of triton X-100 from protein samples. Anal Biochem, 1973, 53: 304鈥?08 CrossRef
    31. Zhou X, Graham TR. Reconstitution of phospholipid translocase activity with purified Drs2p, a type-IV P-type ATPase from budding yeast. Proc Natl Acad Sci USA, 2009, 106: 16586鈥?6591 CrossRef
    32. Kim M, Song E. Iron transport by proteoliposomes containing mitochondrial F1Fo ATP synthase isolated from rat heart. Biochimie, 2010, 92: 333鈥?42 CrossRef
    33. Schaedler TA, Tong Z, van Veen HW. The multidrug transporter LmrP protein mediates selective calcium efflux. J Biol Chem, 2012, 287: 27682鈥?7690 CrossRef
    34. L茅vy D, Bluzat A, Seigneuret M, Rigaud JL. A systematic study of liposome and proteoliposome reconstitution involving Bio-Bead-mediated Triton X-100 removal. Biochim Biophys Acta Biomembr, 1990, 1025: 179鈥?90 CrossRef
    35. Mimms LT, Zampighi G, Nozaki Y, Tanford C, Reynolds JA. Phospholipid vesicle formation and transmembrane protein incorporation using octyl glucoside. Biochemistry, 1981, 20: 833鈥?40 CrossRef
    36. Kasahara M, Hinkle PC. Reconstitution and purification of the D-glucose transporter from human erythrocytes. J Biol Chem, 1977, 252: 7384鈥?390
    37. Israel M, Manaranche R. The release of acetylcholine-from a cellular towards a molecular mechanism. Biol Cell, 1985, 55: 1鈥?4 CrossRef
    38. Traikia M, Warschawski DE, Recouvreur M, Cartaud J, Devaux PF. Formation of unilamellar vesicles by repetitive freeze-thaw cycles: characterization by electron microscopy and P-31-nuclear magnetic resonance. Eur Biophys J Biophys Lett, 2000, 29: 184鈥?95 CrossRef
    39. Mayer LD, Hope MJ, Cullis PR. Vesicles of variable sizes produced by a rapid extrusion procedure. Biochim Biophys Acta, 1986, 858: 161鈥?68 CrossRef
    40. Johnson SM, Bangham AD, Hill MW, Korn ED. Single bilayer liposomes. Biochim Biophys Acta Biomembr, 1971, 223: 820鈥?26 CrossRef
    41. Huang CH. Studies on phosphatidylcholine vesicles. Formation and physical characteristics. Biochemistry, 1969, 8: 344鈥?52 CrossRef
    42. Lapinski MM, Castro-Forero A, Greiner AJ, Ofoli RY, Blanchard GJ. Comparison of liposomes formed by sonication and extrusion: rotational and translational diffusion of an embedded chromophore. Langmuir, 2007, 23: 11677鈥?1683 CrossRef
    43. Bauer PJ, Drechsler M. Association of cyclic GMP-gated channels and Na+-Ca2+-K+ exchangers in bovine retinal rod outer segment plasma-membranes. J Phys Lond, 1992, 451: 109鈥?31 CrossRef
    44. Bucher K, Belli S, Wunderli-Allenspach H, Kramer SD. P-glycoprotein in proteoliposomes with low residual detergent: the effects of cholesterol. Pharm Res, 2007, 24: 1993鈥?004 CrossRef
    45. Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol, 2003, 4: 517鈥?29 CrossRef
    46. Harper JF, Harmon A. Plants, symbiosis and parasites: a calcium signalling connection. Nat Rev Mol Cell Biol, 2005, 6: 555鈥?66 CrossRef
    47. Hofer AM, Brown EM. Extracellular calcium sensing and signalling. Nat Rev Mol Cell Biol, 2003, 4: 530鈥?38 CrossRef
    48. Orrenius S, Zhivotovsky B, Nicotera P. Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol, 2003, 4: 552鈥?65 CrossRef
    49. Simao AM, Yadav MC, Ciancaglini P, Millan JL. Proteoliposomes as matrix vesicles鈥?biomimetics to study the initiation of skeletal mineralization. Braz J Med Biol Res, 2010, 43: 234鈥?41 CrossRef
    50. Simao AMS, Bolean M, Hoylaerts MF, Millan JL, Ciancaglini P. Effects of pH on the production of phosphate and pyrophosphate by matrix vesicles鈥?biomimetics. Calc Tissue Int, 2013, 93: 222鈥?32 CrossRef
    51. Simao AMS, Yadav MC, Narisawa S, Bolean M, Pizauro JM, Hoylaerts MF, Ciancaglini P, Millan JL. Proteoliposomes harboring alkaline phosphatase and nucleotide pyrophosphatase as matrix vesicle biomimetics. J Biol Chem, 2010, 285: 7598鈥?609 CrossRef
    52. Zayas C, Gonzalez D, Acevedo R, del Campo J, Lastre M, Gonzalez E, Romeu B, Cuello M, Balboa J, Cabrera O, Guilherme L, Perez O. Pilot scale production of the vaccine adjuvant proteoliposome derived cochleates (AFCo1) from / Neisseria meningitidis serogroup B. BMC Immunol, 2013, 14(Suppl 1): S4
    53. Acevedo R, Perez O, Zayas C, Perez JL, Callico A, Cedre B, Garcia L, McKee D, Mullen AB, Ferro VA. Cochleates derived from Vibrio cholerae O1 proteoliposomes: the impact of structure transformation on mucosal immunisation. PLoS One, 2012, 7: e46461 CrossRef
    54. Guilherme L, Postol E, de Barros SF, Higa F, Alencar R, Lastre M, Zayas C, Puschel CR, Silva WR, Sa-Rocha LC, Sa-Rocha VM, Perez O, Kalil J. A vaccine against / S. pyogenes: design and experimental immune response. Methods, 2009, 49: 316鈥?21 CrossRef
    55. Acevedo R, Callico A, del Campo J, Gonzalez E, Cedre B, Gonzalez L, Romeu B, Zayas C, Lastre M, Fernandez S, Oliva R, Garcia L, Luis Perez J, Perez O. Intranasal administration of proteoliposome-derived cochleates from Vibrio cholerae O1 induce mucosal and systemic immune responses in mice. Methods, 2009, 49: 309鈥?15 CrossRef
    56. Perez O, Lastre M, Cabrera O, del Campo J, Bracho G, Cuello M, Balboa J, Acevedo R, Zayas C, Gil D, Mora N, Gonzalez D, Perez R, Gonzalez E, Barbera R, Fajardo EM, Sierra G, Solis RL, Campa C. New vaccines require potent adjuvants like AFPL1 and AFCo1. Scand J Immunol, 2007, 66: 271鈥?77 CrossRef
    57. Sobel A, Weber M, Changeux J-P. Large-scale purification of the acetylcholine-receptor protein in its membrane-bound and detergent-extracted forms from Torpedo marmorata electric organ. Eur J Biochem, 1977, 80: 215鈥?24 CrossRef
    58. Epstein M, Racker E. Reconstitution of carbamylcholine-dependent sodium ion flux and desensitization of the acetylcholine receptor from Torpedo californica. J Biol Chem, 1978, 253: 6660鈥?662
    59. Schiebler W, Hucho F. Membranes rich in acetylcholine receptor: characterization and reconstitution to excitable membranes from exogenous lipids. Eur J Biochem, 1978, 85: 55鈥?3 CrossRef
    60. Ramos J, Jung WY, Ramos-Franco J, Mignery GA, Fill M. Single channel function of inositol 1,4,5-trisphosphate receptor type-1 and-2 isoform domain-swap chimeras. J Gen Physiol, 2003, 121: 399鈥?11 CrossRef
    61. Mignery GA, Johnston PA, S眉dhof TC. Mechanism of Ca2+ inhibition of inositol 1,4,5-trisphosphate (InsP3) binding to the cerebellar InsP3 receptor. J Biol Chem, 1992, 267: 7450鈥?455
    62. Kameyama A, Shearman MS, Sekiguchi K, Kameyama M. Cyclic AMP-dependent protein kinase but not protein kinase C regulates the cardiac Ca2+ channel through phosphorylation of its alpha(1) subunit. J Biochem, 1996, 120: 170鈥?76 CrossRef
    63. Navarro J, Pyun HY, Essig A. Voltage-dependence of phosphoenzyme formation of reconstituted Ca2+-ATPase vesicles. Biophys J, 1985, 47: A345鈥?45
    64. Cheng KH, Lepock JR, Hui SW, Yeagle PL. The role of cholesterol in the activity of reconstituted Ca-ATPase vesicles containing unsaturated phosphatidylethanolamine. J Biol Chem, 1986, 261: 5081鈥?087
    65. Wakabayashi S, Shigekawa M. Rapid reconstitution and characterization of highly-efficient sarcoplasmic-reticulum Ca pump. Biochim Biophys Acta, 1985, 813: 266鈥?76 CrossRef
    66. Moffett S, Brown DA, Linder ME. Lipid-dependent targeting of G proteins into rafts. J Biol Chem, 2000, 275: 2191鈥?198 CrossRef
    67. Dalziel JE, Wong SS, Phung T, Zhang YL, Dunlop J. Expression of human BK ion channels in Sf9 cells, their purification using metal affinity chromatography, and functional reconstitution into planar lipid bilayers. J Chromatogr B Anal Technol Biomed Life Sci, 2007, 857: 315鈥?21 CrossRef
    68. Weber T, Zemelman BV, McNew JA, Westermann B, Gmachl M, Parlati F, S枚llner TH, Rothman JE. SNAREpins: minimal machinery for membrane fusion. Cell, 1998, 92: 759鈥?72 CrossRef
    69. Nickel W, Weber T, McNew JA, Parlati F, Sollner TH, Rothman JE. Content mixing and membrane integrity during membrane fusion driven by pairing of isolated v-SNAREs and t-SNAREs. Proc Natl Acad Sci USA, 1999, 96: 12571鈥?2576 CrossRef
    70. Liu TT, Tucker WC, Bhalla A, Chapman ER, Weisshaar JC. SNARE-driven, 25-millisecond vesicle fusion in vitro. Biophys J, 2005, 89: 2458鈥?472 CrossRef
    71. Cho WJ, Shin L, Ren G, Jena BP. Structure of membrane-associated neuronal SNARE complex: implication in neurotransmitter release. J Cell Mol Med, 2009, 13: 4161鈥?165 CrossRef
  • 刊物主题:Life Sciences, general;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1869-1889
文摘
Membrane proteins are involved in various critical biological processes, and studying membrane proteins represents a major challenge in protein biochemistry. As shown by both structural and functional studies, the membrane environment plays an essential role for membrane proteins. In vitro studies are reliant on the successful reconstitution of membrane proteins. This review describes the interaction between detergents and lipids that aids the understanding of the reconstitution processes. Then the techniques of detergent removal and a few useful techniques to refine the formed proteoliposomes are reviewed. Finally the applications of reconstitution techniques to study membrane proteins involved in Ca2+ signaling are summarized.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.