Irradiation of Yarrowia lipolytica NRRL YB-567 creating novel strains with enhanced ammonia and oil production on protein and carbohydrate substrates
详细信息    查看全文
  • 作者:Mitch R. Lindquist ; Juan Carlos López-Nú?ez…
  • 关键词:Yarrowia lipolytica UV ; C mutagenesis ; Yarrowia protein utilization ; Acylglycerols from oleaginous yeast ; Yarrowia ammonia production ; Yarrowia carbohydrate substrate utilization
  • 刊名:Applied Microbiology and Biotechnology
  • 出版年:2015
  • 出版时间:November 2015
  • 年:2015
  • 卷:99
  • 期:22
  • 页码:9723-9743
  • 全文大小:6,440 KB
  • 参考文献:Abghari A, Chen S (2014) Yarrowia lipolytica as an oleaginous cell factory platform for production of fatty acid-based biofuels and bioproducts. Front Energy Res 2:21CrossRef
    ASTM D6584-13e1, Standard test method for determination of total monoglycerides, total diglycerides, total triglycerides, and free and total glycerin in b-100 biodiesel methyl esters by gas chromatography (2013) Developed by Subcommittee: D02.04.0L, Book of Standards Volume: 05.03, ASTM International, West Conshohocken, PA
    Bang SS, Pazirandeh M (1999) Physical properties and heavy metal uptake of encapsulated Escherichia coli expressing a metal binding gene (NCP). J Microencapsul 16(4):489-99CrossRef PubMed
    Barth G, Gaillardin C (1996) Yarrowia lipolytica. In: Wolf K (ed) Nonconventional yeasts in biotechnology. Springer, Berlin, pp 313-88CrossRef
    Barth G, Gaillardin C (1997) Physiology and genetics of the dimorphic fungus Yarrowia lipolytica. FEMS Microbiol Rev 19(4):219-37CrossRef PubMed
    Beopoulos A, Cescut J, Haddouche R, Uribelarrea J, Molina-Jouve C, Nicaud J (2009) Yarrowia lipolytica as a model for bio-oil production. Prog Lipid Res 48:375-87CrossRef PubMed
    Berge GM, Hatlen B, Odom JM, Ruyter B (2013) Physical treatment of high EPA Yarrowia lipolytica biomass increases the availability of n-3 highly unsaturated fatty acids when fed to Atlantic salmon. Aquac Nutr 19(s1):110-21CrossRef
    Biodiesel Tech (2013) Biodiesel distillation temperature, cetane number, and viscosity vs. fatty acid profile. University of Idaho, Sponsored by USDA. http://?web.?cals.?uidaho.?edu/?biodiesel/?files/-013/-8/?T-90-TechNote.?pdf . Accessed 8 Aug 2015
    Blazeck J, Liu L, Redden H, Alper HS (2011) Tuning gene expression in Yarrowia lipolytica by a hybrid promoter approach. Appl Environ Microbiol 77(22):7905-914PubMedCentral CrossRef PubMed
    Blazeck J, Hill A, Liu L, Knight R, Miller J, Pan A, Otoupal P, Alper HS (2014) Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production. Nat Commun 5:3131CrossRef PubMed
    Bordes F, Fudalej F, Dossat V, Nicaud JM, Marty A (2007) A new recombinant protein expression system for high-throughput screening in the yeast Yarrowia lipolytica. J Microbiol Methods 70(3):493-02CrossRef PubMed
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248-54CrossRef PubMed
    Casey E, Mosier NF, Adamec J, Stockdale Z, Ho N, Sedlak M (2013) Effect of salts on the co-fermentation of glucose and xylose by a genetically engineered strain of Saccharomyces cerevisiae. Biotechnol Biofuels 6:83PubMedCentral CrossRef PubMed
    Celińska E, Kubiak P, Bia?as W, Dziadas M, Grajek W (2013) Yarrowia lipolytica: the novel and promising 2-phenylethanol producer. J Ind Microbiol Biotechnol 40(3-):389-92PubMedCentral CrossRef PubMed
    Coelho MAZ, Amaral PFF, Belo I (2010) Yarrowia lipolytica: an industrial workhorse. In: Méndez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology. Formatex 2010, pp 930-44
    Dujon B, Sherman D, Fischer G, Durrens P, Casaregola S, Lafontaine I, De Montigny J, Marck C, Neuvéglise C, Talla E, Goffard N, Frangeul L, Aigle M, Anthouard V, Babour A, Barbe V, Barnay S, Blanchin S, Beckerich JM, Beyne E, Bleykasten C, Boisramé A, Boyer J, Cattolico L, Confanioleri F, De Daruvar A, Despons L, Fabre E, Fairhead C, Ferry-Dumazet H, Groppi A, Hantraye F, Hennequin C, Jauniaux N, Joyet P, Kachouri R, Kerrest A, Koszul R, Lemaire M, Lesur I, Ma L, Muller H, Nicaud JM, Nikolski M, Oztas S, Ozier-Kalogeropoulos O, Pellenz S, Potier S, Richard GF, Straub ML, Suleau A, Swennen D, Tekaia F, Wésolowski-Louvel M, Westhof E, Wirth B, Zeniou-Meyer M, Zivanovic I, Bolotin-Fukuhara M, Thierry A, Bouchier C, Caudron B, Scarpelli C, Gaillardin C, Weissenbach J, Wincker P, Souciet JL (2004) Genome evolution in yeasts. Nature 430(6995):35-4CrossRef PubMed
    Elías LG (1979) Chemical composition of coffee-berry by-products. In: Braham JE, Bressani R (eds) Coffee pulp; composition, technology, and utilization. Institute of Nutrition of Central America and Panama, Ottawa, pp 11-6
    Etschmann MMW, Sell D, Schrader J (2003) Screening of yeasts for the production of the aroma compound 2-phenylethanol in a molasses-based medium. Biotechnol Lett 25(7):531-36CrossRef PubMed
    Finogenova TV, Morgunov IG, Kamzolova SV, Chernyavskaya OG (2005) Organic acid production by the yeast Yarrowia lipolytica: a review of prospects. Appl Biochem Microbiol 41:418-25CrossRef
    Fontanille P, Kumar V, Christophe G, Nouaille R, Larroche C (2012) Bioconversion of volatile fatty acids into lipids by the oleaginous yeast Yarrowia lipolytica. Bioresour Technol 114:443-49CrossRef PubMed
    Garcia Sanchez R, Karhumaa K, Fonseca C, Sànchez-Nogué V, Almeida JRM, Larsson CU, Bengtsson O, Bettiga M, Hahn-
  • 作者单位:Mitch R. Lindquist (1)
    Juan Carlos López-Nú?ez (2)
    Marjorie A. Jones (3)
    Elby J. Cox (1)
    Rebecca J. Pinkelman (4)
    Sookie S. Bang (4)
    Bryan R. Moser (5)
    Michael A. Jackson (1)
    Loren B. Iten (6)
    Cletus P. Kurtzman (7)
    Kenneth M. Bischoff (1)
    Siqing Liu (1)
    Nasib Qureshi (6)
    Kenneth Tasaki (8)
    Joseph O. Rich (1)
    Michael A. Cotta (6)
    Badal C. Saha (6)
    Stephen R. Hughes (1)

    1. United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Renewable Product Technology Research Unit, 1815 North University Street, Peoria, IL, 61604, USA
    2. National Coffee Research Centre -Cenicafe, National Federation of Coffee Growers of Colombia - FNC, Cenicafé Planalto Km 4 vía Antigua Chinchiná, Manizales, Caldas, Colombia
    3. 4160 Department of Chemistry, Illinois State University, 214 Julian Hall, Normal, IL, 61790-4160, USA
    4. South Dakota School of Mines & Technology, Chemical and Biological Engineering, 501 East Saint Joseph Street, Rapid City, SD, 57701-3995, USA
    5. USDA, ARS, NCAUR, Bio-oils Research Unit, 1815 North University Street, Peoria, IL, 61604, USA
    6. USDA, ARS, NCAUR, Bioenergy Research Unit, 1815 North University Street, Peoria, IL, 61604, USA
    7. USDA, ARS, NCAUR, Bacterial Foodborne Pathogens and Mycology Research Unit, 1815 North University Street, Peoria, IL, 61604, USA
    8. Mitsubishi Chemical, USMC Research & Innovation, 410 Palos Verdes Blvd, Redondo Beach, CA, 90277, USA
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Microbiology
    Microbial Genetics and Genomics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0614
文摘
Increased interest in sustainable production of renewable diesel and other valuable bioproducts is redoubling efforts to improve economic feasibility of microbial-based oil production. Yarrowia lipolytica is capable of employing a wide variety of substrates to produce oil and valuable co-products. We irradiated Y. lipolytica NRRL YB-567 with UV-C to enhance ammonia (for fertilizer) and lipid (for biodiesel) production on low-cost protein and carbohydrate substrates. The resulting strains were screened for ammonia and oil production using color intensity of indicators on plate assays. Seven mutant strains were selected (based on ammonia assay) and further evaluated for growth rate, ammonia and oil production, soluble protein content, and morphology when grown on liver infusion medium (without sugars), and for growth on various substrates. Strains were identified among these mutants that had a faster doubling time, produced higher maximum ammonia levels (enzyme assay) and more oil (Sudan Black assay), and had higher maximum soluble protein levels (Bradford assay) than wild type. When grown on plates with substrates of interest, all mutant strains showed similar results aerobically to wild-type strain. The mutant strain with the highest oil production and the fastest doubling time was evaluated on coffee waste medium. On this medium, the strain produced 0.12 g/L ammonia and 0.20 g/L 2-phenylethanol, a valuable fragrance/flavoring, in addition to acylglycerols (oil) containing predominantly C16 and C18 residues. These mutant strains will be investigated further for potential application in commercial biodiesel production. Keywords Yarrowia lipolytica UV-C mutagenesis Yarrowia protein utilization Acylglycerols from oleaginous yeast Yarrowia ammonia production Yarrowia carbohydrate substrate utilization
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.