The molecular stress function (MSF) model in rheology
详细信息    查看全文
  • 作者:Víctor Hugo Rolón-Garrido
  • 关键词:Rheology ; MSF model ; Elongational flow ; Strain hardening ; Constitutive equation ; Polymer melts ; Polymer solution
  • 刊名:Rheologica Acta
  • 出版年:2014
  • 出版时间:September 2014
  • 年:2014
  • 卷:53
  • 期:9
  • 页码:663-700
  • 全文大小:7,781 KB
  • 参考文献:1. Abbasi M, Ebrahimi NG, Nadali M, Esfahani MK (2012) Elongational viscosity of LDPE with various structures: employing a new evolution equation in MSF theory. Rheol Acta 51(2):163-77
    2. Abbasi M, Ebrahimi NG, Wilhelm M (2013) Investigation of the rheological behaviour of industrial tubular and autoclave LDPEs under SAOS, LAOS, transient shear, and elongational flows compared with predictions from the MSF theory. J Rheol 57(6):1693-714
    3. Ahirwal D, Filipe S, Neuhaus I, Busch M, Schlatter G, Wilhelm M (2014) Large amplitude oscillatory shear and uniaxial extensional rheology of blends from linear and long-chain branched polyethylene and polypropylene. J Rheol 58(3):635-58
    4. Aho J, Rolón-Garrido VH, Syrj?l? S, Wagner MH (2010) Extensional viscosity in uniaxial extension and contraction flow—comparison of experimental methods and application of the molecular stress function model. J Non-Newton Fluid Mech 165:212-18
    5. Aho J, Rolón-Garrido VH, Syrj?l? S, Wagner MH (2010) Measurement technique and data analysis of extensional viscosity for polymer melts by Sentmanat extensional rheometer (SER). Rheol Acta 49:359-70
    6. Bach A, Almdal K, Rasmussen HK, Hassager O (2003) Elongational viscosity of narrow molar mass distribution polystyrene. Macromolecules 36:5174-179
    7. Bach A, Rasmussen HK, Longin PY, Hassager O (2002) Growth of non-axisymmetric disturbances of the free surface in the filament stretching rheometer: experiments and simulation. J Non-Newtonian Fluid Mech 108:163-86
    8. Baumgaertel M, Schausberger A, Winter HH (1990) The relaxation of polymers with linear flexible chains of uniform length. Rheol Acta 29:400-08
    9. Bastian H (2001) Non-linear viscoelasticity of linear and long-chainbranched polymer melts in shear and extensional flows, Ph.D. Thesis, Stuttgart University, Germany. http://elib.uni-stuttgart.de/opus/volltexte/2001/894
    10. Booij HC, Palmen JHM (1982) Some aspects of linear and nonlinear viscoelastic behaviour of polymer melts in shear. Rheol Acta 21:376-87
    11. Currie PK (1982a) Constitutive equations for polymer melts predicted by the Doi-Edwards and Curtiss-Bird kinetic theory models. J Non-Newtonian Fluid Mech 11:53-8
    12. Currie PK (1982b) Relationship between extensional and shear properties of polymer melts as predicted by the Doi-Edwards model. Polym Prep 23(2):6-
    13. de Cindio B (1984) Stress relaxation of polymer melts subjected to large uniaxial tension. Polymer 25:1049-053
    14. de Gennes PG (1971) Reptation of a polymer chain in the presence of fixed obstacles. J Chem Phys 55:572-79
    15. de Rosa ME, Winter HH (1994) The effect of entanglements on the rheological behaviour of polybutadiene critical gels. Rheol Acta 33:220-37
    16. Dealy JM, Larson RG (2006) Structure and rheology of molten polymers. From structure to flow behavior and back again. Hanser, Germany
    17. Doi M, Edwards SF (1978a) Dynamics of concentrated polymer systems. Part 1. Brownian motion in the equilibrium state. Trans Faraday Soc XX:1789-801
    18. Doi M, Edwards SF (1978b) Dynamics of concentrated polymer systems. Part 2. Molecular motion under flow. Trans Faraday Soc XX:1802-817
    19. Doi M, Edwards SF (1978c) Dynamics of concentrated polymer systems. Part 3. The constitutive equations. Trans Faraday Soc XX:1818-832
    20. Doi M, Edwards SF (1979) Dynamics of concentrated polymer systems. Part 4. Rheological properties. Trans. Faraday Soc XX:38-4
    21. Doi M, Edwards SF (1986) Theory of polymer dynamics. Oxford University Press, Great Britain
    22. Eriksson T, Rasmussen HK (2005) The effects of polymer melt rheology on the replication of surface microstructures in isothermal moulding. J Non-Newtonian Fluid Mech 127:191-00
    23. Ferry JD (1980) Viscoelastic properties of polymers. Wiley, New York
    24. Garritano R, Berting H (2006) Polymer melt and elastomer extension fixture. US Patent No. 7, 096, 728
    25. Gianotti G, Cicuta A, Romanini D (1980) Long chain branching in low-density polyethylene: 1. Molecular structure. Polym 21:1087-091
    26. Gotsis AD, Zeevenhoven BLF, Tsenoglou C (2004) Effect of long branches on the rheology of polypropylene. J Rheol 48(4):895-14
    27. Graessley WW (1982) Entangled linear, branched and network polymer systems—molecular theories. Adv Polym Sci 47:67-17
    28. Gumbrell SM, Mullnis L, Rivlin RS (1953) Departures of the elastic behaviour of rubbers in simple extension from the kinetic theory. Trans Faraday Soc 49:1495-505
    29. Hadinata C, Boss D, Gabriel C, Wassner E, Rüllmann M, Kao N, Laun M (2007) Elongation-induced crystallization of a high molecular weight isotactic polybutene-1 melt compared to shear-induced crystallization. J Rheol 51(2):195-15
    30. Hassager O, Hansen R (2010) Constitutive equations for the Doi-Edwards model without independent alignment. Rheol Acta 49(6):555-62
    31. Hassanabadi HM, Abbasi M, Wilhelm M, Rodrigue D (2013) Validity of the modified molecular stress function theory to predict the rheological properties of polymer nanocomposites. J Rheol 57(3):881-99
    32. Huang Q, Rasmussen HK, Skov AL, Hassager O (2012) Stress relaxation and reversed low of low-density polyethylene melts following uniaxial extension. J Rheol 56(6):1535-554
    33. Hyun K, Wilhelm M (2009) Establishing a new mechanical nonlinear coefficient Q from FT-rheology: first investigation of entangled linear and comb polymer systems. Macromolecules 42:411-22
    34. Ianniruberto G, Marrucci G (1996) On compatibility of the Cox-Merz rule with the model of Doi and Edwards. J Non-Newtonian Fluid Mech 65:241-46
    35. Ianniruberto G, Marrucci G (2014) Convective constraint release (CCR) revisited. J Rheol 58:89-02
    36. Isaki T, Takahashi M, Urakawa O (2003) Biaxial damping function of entangled monodisperse polystyrene melts: comparison with the Mead-Larson-Doi model. J Rheol 47:1201-210
    37. Janeschitz-Kriegl H (1983) Polymer melt rheology and flow birefringence. Springer, Berlin
    38. Kharlamov AA, Filip P (2012) On the generalised stretch function. Macromol Theory Simul 21:272-78
    39. Kheirandish S, Stadlbauer M (2009) Molecular stress function theory and analysis of branching structure in industrial polyolefins. J Therm Anal Calorim 98(3):629-37
    40. Kim DM, Busch M, Hoefsloot HCJ, Iedema PD (2004) Molecular weight distribution modeling in low-density polyethylene polymerization; impact of scission mechanisms in the case of CSTR. Chem Eng Sci 59:699-18
    41. Kuhn R, Kr?mer H (1982) Structures and properties of different low density polyethylenes. Colloid Polym Sci 260:1083-092
    42. Larson RG (1988) Constitutive equations for polymer melts and solutions. Buttherworth, USA
    43. Lagendijk RP, Hogt AH, Buijtenhuijs A, Gotsis AD (2001) Peroxydicarbonate modification of polypropylene and extensional flow properties. Polymer 42:10035-0043
    44. Leblans PJR (1987) Nonlinear viscoelasticity of polymer melts in different types of flow. Rheol Acta 26:135-43
    45. Lyhne A, Rasmussen HK, Hassager O (2009) Simulation of elastic rupture in extension of entangled monodisperse polymer melts. Phys Rev Lett 102:138301
    46. Malkin AY, Isayev AI (2006) Rheology, concepts, methods and applications. ChemTec Publisching, Toronto
    47. Marín JMR, Rasmussen HK (2009) Lagrangian finite-element method for the simulations of K-BKZ fluids with third order accuracy. J Non-Newtonian Fluid Mech 156:177-88
    48. Marrucci G (1996) Dynamics of entanglements: a nonlinear model consistent with the Cox-Merz rule. J Non-Newtonian Fluid Mech 62:279-89
    49. Marrucci G, de Cindio B (1980) The stress relaxation of molten PMMA at large deformations and its theoretical interpretation. Rheol Acta 19:68-5
    50. Marrucci G, Hermans JJ (1980) Nonlinear viscoelasticity of concentrated polymeric liquids. Macromolecules 13:380-87
    51. Marrucci G, Grizzuti N (1983) The free energy function of the Doi-Edwards theory: analysis of the instabilities in stress relaxation. J Rheol 27:433-50
    52. Marrucci G, Ianniruberto G (2004) Interchain pressure effect in extensional flows of entangled polymer melts. Macromolecules 37:3934-942
    53. McKinley GH, Sridhar T (2002) Filament-stretching rheometry of complex fluids. Annu Rev Fluid Mech 34:375-15
    54. McLeish TCB, Larson RG (1998) Molecular constitutive equations for a class of branched polymers: the pom-pom polymer. J Rheol 42(1):81-10
    55. Menezes EV, Graessley WW (1982) Nonlinear rheological behavior of polymer systems for several shear-flow histories. Polym Phys 20:1817-833
    56. Mooney M (1940) A theory of large elastic deformation. J Appl Phys 11:582-92
    57. Nielsen JK, Rasmussen HK, Denberg M, Almdal K, Hassager O (2006) Nonlinear branch-point dynamics of multiarm polystyrene. Macromolecules 39:8844-853
    58. Münstedt H, Laun HM (1979) Elongational behaviour of low density polyethylene melt II. Transient behaviour in constant stretching rate and tensile creep experiments. Comparison with shear data. Temeprature dependence of the elongational properties. Rheol Acta 18:492-04
    59. Nielsen JK, Rasmussen HK (2008) Reversed extension flow. J Non-Newtonian Fluid Mech 155:15-9
    60. Nielsen JK, Rasmussen HK, Hassager O (2008) Stress relaxation of narrow molar mass distribution polystyrene following uniaxial extension. J Rheol 52(4):885-99
    61. ?ttinger HC (2005) Beyond equilibrium thermodynamics. Wiley, New York
    62. Ogura K, Wagner MH (2013) Rheological characterization of cross-linked poly(methyl methacrylate). Rheol Acta 52(8-):753-65
    63. Olley P (2005) A study of the quadratic molecular stress function constitutive model in simulation. J Non-Newtonian Fluid Mech 125:171-83
    64. Olley P, Wagner MH (2006) A modification of the convective constraint release mechanism in the molecular stress function model giving enhanced vortex growth. J Non-Newtonian Fluid Mech 135:68-1
    65. Osaki K, Nishizawa K, Kurata M (1982) Material time constant characterizing the nonlinear viscoelasticity of entangled polymeric systems. Macromolecules 15:1068-071
    66. Pearson DS, Kiss AD, Fetters LJ, Doi M (1989) Flow-induced birefringence of concentrated polyisoprene solutions. J Rheol 33(3):517-35
    67. Pearson DS, Kiss AD, Fetters LJ, Doi M (1990) Erratum: Flow-induced birefringence of concentrated polyisoprene solutions [J. Rheol. 33(3), 517-535]. J Rheol 34(4):613
    68. Raave A (2012) Principles of polymer chemistry. Springer, New York
    69. Rasmussen HK (2002) Lagrangian viscoelastic flow computations using a generalized molecular stress function model. J Non-Newtonian Fluid Mech 106:107-20
    70. Rasmussen HK (2013) Catastrophic failure of polymer melts during extension. J Non-Newtonian Fluid Mech 198:136-40
    71. Rasmussen HK, Nielsen JK, Bach A, Hassager O (2005) Viscosity overshoot in the start-up of uniaxial elongation of low density polyethylene melts. J Rheol 49(2):369-81
    72. Rasmussen HK, Bach A (2005) On the bursting of linear polymer melts in inflation process. Rheol Acta 44:435-45
    73. Rasmussen HK, Eriksson T (2007) Gas displacement of polymer melts in a cylinder: experiments and viscoelastic simulations. J Non-Newtonian Fluid Mech 143:1-
    74. Rasmussen HK, Yu K (2008) On the burst of branched polymer melts during inflation. Rheol Acta 47:149-57
    75. Rasmussen HK, Yu K (2011) Spontaneous breakup of extended monodisperse polymer melts. Phys Rev Lett 107:126001
    76. Rasmussen HK, Huang Q (2014a) The missing link between the extensional dynamics of polymer melts. J Non-Newtonian Fluid Mech 204:1-
    77. Rasmussen HK, Huang Q (2014b) Interchain tube pressure effect in extensional flows of oligomer diluted nearly monodisperse polystyrene melts. Rheol Acta 53:199-08
    78. Rasmussen HK, Laillé P, Yu K (2008) Large amplitude oscillatory elongation flow. Rheol Acta 47:97-03
    79. Rasmussen HK, Skov AL, Nielsen JK, Laillé P (2009) Elongational dynamics of multiarm polystyrene. J Rheol 53(2):401-15
    80. Rivlin RS (1948) Large elastic deformations of isotropic materials. 4. Further developments of the general theory. Philos Trans R Soc (London) Ser A 241:379-97
    81. Rolón-Garrido VH, Wagner MH, Luap C, Schweizer T (2006) Modeling non-Gaussian extensibility effects in elongation of nearly monodisperse polystyrene melts. J Rheol 50(3):327-40
    82. Rolon-Garrido VH, Wagner MH (2007) The MSF model: relation of nonlinear parameters to molecular structure of long-chain branched polymer melts. Rheol Acta 46:583-94
    83. Rolón-Garrido VH, Wagner MH (2009) The damping function in rheology. Rheol Acta 48:245-84
    84. Rolón-Garrido VH, Wagner MH (2014a) Linear and non-linear rheological characterization of photo-oxidative degraded LDPE. Polym Degrad Stabil 99:136-45
    85. Rolón-Garrido VH, Wagner MH (2014b) Elongational rheology and cohesive fracture of photo-oxidated LDPE. J Rheol 58(1):199-22
    86. Rolón-Garrido VH, Pivokonsky R, Filip P, Zatloukal M, Wagner MH (2009) Modelling elongational and shear rheology of two LDPE melts. Rheol Acta 48:691-97
    87. Rolón-Garrido VH, Luo J, Wagner MH (2011) Enhancement of strain-hardening by thermo-oxidative degradation of low-density polyethylene. Rheol Acta 50:519-35
    88. Rolón-Garrido VH, Zatloukal M, Wagner MH (2013) Increase of long-chain branching by thermo-oxidative treatment of LDPE: chromatographic, spectroscopic and rheological evidence. J Rheol 57(1):105-29
    89. Schieber JD, Indei T, Steenbakkers RJA (2013) Fluctuating entanglements in single-chain mean-field models. Polymers 5:643-78
    90. Sentmanat M (2004) Miniature universal testing platform: from extensional melt rheology to solid-state deformation behaviour. Rheol Acta 43:657-69
    91. Takahashi M, Isaki T, Takigawa T, Masuda T (1993) Measurement of biaxial and uniaxial extensional flow behavior of polymer melts at constant strain rates. J Rheol 37:827-46
    92. Thévenon A, Fulchiron R (2013) Elongational behaviour of amorphous polymers in the vicinity and above the glass transition temperature. Polym Test 32:691-00
    93. van Ruymbeke E, Bailly C, Keunings R, Vlassopoulos D (2006) A general methodology to predict the linear rheology of branched polymers. Macromolecules 39:6248-259
    94. Voyiatzis E, Tsenoglou CJ, Boudouvis AG (2009) On Hadamard stability and dissipative stability of the molecular stress function model of non-linear viscoelasticity. Int J Non-Linear Mech 44:727-34
    95. Wagner MH (1976) Analysis of time-dependent non-linear stress-growth data for shear and elongational flow of a low-density branched polyethylene melt. Rheol Acta 15:136-42
    96. Wagner MH (1978) A constitutive analysis of uniaxial elongational flow data of a low-density polyethylene melt. J Non-Newtonian Fluid Mech 4:39-5
    97. Wagner MH, Stephenson SE (1979a) The spike-strain test for polymeric liquids and its relevance for irreversible destruction of network connectivity by deformation. Rheol Acta 18:463-68
    98. Wagner MH, Stephenson SE (1979b) The irreversibility assumption of network disentanglement in flowing polymer melts and its effects on elastic recoil predictions. J Rheol 23(4):489-04
    99. Wagner MH (1990) The nonlinear strain measure of polyisobutylene melt in general biaxial flow and its comparison to the Doi-Edwards model. Rheol Acta 29:594-03
    100. Wagner MH, Demarmels A (1990) A constitutive analysis of extensional flows of polyisobutylene. J Rheol 34(6):943-57
    101. Wagner MH (1992) The slip-link model: a constitutive equation for general biaxial extension of polymer melts. Makromol Chem Macromol Symp 56:13-4
    102. Wagner MH (1999) Constitutive equations for polymer melts and rubbers: lessons from the 20th century. Korea-Australia Rheol J 11(4):293-04
    103. Wagner MH, Meissner J (1980) Network disentanglement and time-dependent flow behaviour of polymer melts. Makromol Chem 181:1533-550
    104. Wagner MH, Schaeffer J (1992a) Constitutive equations from Gaussian slip-link network theories in polymer melt rheology. Rheol Acta 31:22-1
    105. Wagner MH, Schaeffer J (1992b) Nonlinear measures for general biaxial extension of polymer melts. J Rheol 36(1):1-6
    106. Wagner MH (1993) The nonlinear strain measure of polymer melts and rubbers: a unifying approach. Makromol Chem Macromol Symp 68:95-08
    107. Wagner MH, Schaeffer J (1993) Rubbers and polymer melts: universal aspects of nonlinear stress-strain relations. J Rheol 37(4):643-61
    108. Wagner MH (1994a) Analysis of small angle neutron scattering data on poly(dimethylsiloxane) network unfolding. Macromolecules 27:5223-226
    109. Wagner MH (1994b) The origin of the C 2 term in rubber elasticity. J Rheol 38(3):655-79
    110. Wagner MH (2011) The effect of dynamic tube dilation on chain stretch in nonlinear polymer melt rheology. J Non-Newtonian Fluid Mech 166:915-24
    111. Wagner MH, Schaeffer J (1994) Assessment of nonlinear strains measures for extensional and shearing flows of polymer melts. Rheol Acta 33:506-16
    112. Wagner MH, Geiger K (1997) The role of the orientation tensor in the rheology of flexible polymers. Macromol Theor Simul 6:703-11
    113. Wagner MH, Ehrecke P (1998) Dynamics of polymer melts in reversing shear flows. J Non-Newtonian Fluid Mech 76:183-97
    114. Wagner MH, Ehrecke P, Hachmann P, Meissner J (1998a) A constitutive analysis of uniaxial, equibiaxial and planar extension of a commercial linear high-density polyethylene melt. J Rheol 42(3):621-38
    115. Wagner MH, Bastian H, Ehrecke P, Kraft M, Hachmann P, Meissner J (1998b) Nonlinear viscoelastic characterization of a linear polyethylene (HDPE) melt in rotational and irrotational flows. J Non-Newt Fluid Mech 79:283-96
    116. Wagner MH, Bastian H, Hachmann P, Meissner J, Kurzbeck S, Münstedt H, Langouche F (2000) The strain-hardening behaviour of linear and long-chain-branched polyolefin melts in extensional flows. Rheol Acta 39:97-09
    117. Wagner MH, Rubio P, Bastian H (2001) The molecular stress function model for polydisperse polymer melts with dissipative convective constraint release. J Rheol 45(6):1387-412
    118. Wagner MH, Bastian H, Bernnat A, Kurzbeck S, Chai CK (2002) Determination of elongational viscosity of polymer melts by RME and Rheotens experiments. Rheol Acta 41:316-25
    119. Wagner MH, Yamaguchi M, Takahashi M (2003) Quantitative assessment of strain hardening of low-density polyethylene melts by the molecular stress function model. J Rheol 47(3):779-93
    120. Wagner MH, Kheirandish S, Yamaguchi M (2004a) Quantitative analysis of melt elongational behavior of LLDPE/LDPE blends. Rheol Acta 44:198-18
    121. Wagner MH, Hepperle J, Münstedt H (2004b) Relating rheology and molecular structure of model branched polystyrene melts by molecular stress function theory. J Rheol 48(3):489-03
    122. Wagner MH, Kheirandish S, Koyama K, Nishioka A, Minegishi A, Takahashi T (2005a) Modeling strain hardening of polydisperse polystyrene melts by molecular stress function theory. Rheol Acta 44:235-43
    123. Wagner MH, Kheirandish S, Hassager O (2005b) Quantitative prediction of transient and steady-state elongational viscosity of nearly monodisperse polystyrene melts. J Rheol 49:1317-327
    124. Wagner MH, Kheirandish S, Stange J, Münstedt H (2006) Modeling elongational viscosity of blends of linear and long-chain branched propylenes. Rheol Acta 46(2):211-21
    125. Wagner MH, Rolón-Garrido VH (2010) The interchain pressure effect in shear rheology. Rheol Acta 49:459-71
    126. Wagner MH, Rolón-Garrido VH, Chai CK (2005) Exponential shear flow of branched polyethylenes in rotational parallel-plate geometry. Rheol Acta 45:164-73
    127. Wagner MH, Rolón-Garrido VH, Nielsen JK, Rasmussen HK, Hassager O (2008a) A constitutive analysis of transient and steady-state elongational viscosities of bidisperse polystyrene blends. J Rheol 52(1):67-6
    128. Wagner MH, Rolón-Garrido VH (2008b) Verification of branch point withdrawal in elongational flow of pom-pom polystyrene melt. J Rheol 52(5):1049-068
    129. Wagner MH, Rolón-Garrido VH (2009) Nonlinear rheology of linear polymer melts: modeling chain stretch by interchain tube pressure and Rouse time. Korea-Australia Rheol J 21(4):203-11
    130. Wagner MH, Rolón-Garrido VH, Hyun K, Wilhelm M (2011) Analysis of medium amplitude oscillatory shear data of entangled linear and model comb polymers. J Rheol 55(3):495-16
    131. Wapperom P, Leygue A, Keunings R (2005) Numerical simulation of large amplitude oscillatory shear of a high-density polyethylene melt using the MSF model. J Non-Newtonian Fluid Mech 130:63-6
    132. Winter HH, Mours M (1997) Rheology of polymers near liquid-solid transitions. Adv Polym Sci 134:165-34
    133. Ye X, Sridhar T (2005) Effects of the polydispersity on rheological properties of entangled polystyrene solutions. Macromolecules 38:3442-449
    134. Yu K, Marín JMR, Rasmussen HK, Hassager O (2010) 3D modeling of dual wind-up extensional rheometers. J Non-Newtonian Fluid Mech 165(1-):14-3
    135. Yu K, Rasmussen HK, Marín JMR, Hassager O (2011) The dynamics of cylindrical samples in dual wind-up extensional rheometers. J Rheol 55(3):571-80
    136. Yu K, Rasmussen HK, Román-Marín JM, Hassager O (2012) Mechanism of spontaneous hole formation in thin polymeric films. Phys Rev B 85:024201
  • 作者单位:Víctor Hugo Rolón-Garrido (1)

    1. Department of Polymer Engineering/Polymer Physics, Berlin Institute of Technology (TU Berlin), Fasanenstrasse 90, 10623, Berlin, Germany
  • ISSN:1435-1528
文摘
The molecular stress function (MSF) model is an integral constitutive equation introduced more than two decades ago. It is based on the time-deformation separability principle. The time contribution encloses the linear viscoelastic information, which can be provided by the phenomenological models or any molecular theory. The deformation contribution is defined in the MSF model as a strain measure describing the orientation and the stretch of the strands of the chain as independent processes. The orientation is described by the second-order tensor of the Doi-Edwards model, considering the independent alignment assumption. The stretch is taken into account by the molecular stress function, the main characteristic being that it is included inside the integral and it is the solution of an evolution equation. Since its proposal, the MSF model has been used to describe quantitatively the non-linear rheology of a broad variety of materials such as rubbers, linear and long-chain branched polymer melts and blends of polydisperse samples relevant to the industry. Nearly, monodisperse systems in solution and melt states have also been studied in samples with different structures like linear, bidisperse blends with linear components, combs and pom-pom molecules. Predictions have been obtained for a variety of deformations like uniaxial, equibiaxial and planar extensional flow as well as for steady, medium and large amplitude oscillatory and exponential shear flow. The quantitative description of polymer melts in transient elongation is crucial for numerical simulations. Therefore, the MSF model has been applied to perform finite element simulations for different processes and freesurface deformations, due to its flexibility, reliability and reduced number of material parameters. The integral constitutive equation and its physical interpretation remains the same since it was first published. The evolution equation of the molecular stress function is material dependent because it considers different molecular mechanisms occurring in different structures. Given its importance to rheology, it is the objective of this contribution to review the antecedents, physical basis and applications of the MSF model.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.