Characterization of bilayer bacterial cellulose membranes with different fiber densities: a promising system for controlled release of the antibiotic ceftriaxone
详细信息    查看全文
  • 作者:Silmara C. Lazarini ; Renata de Aquino ; André C. Amaral ; Fabiana C. A. Corbi…
  • 关键词:Gluconacetobacter hansenii ; Bacterial cellulose membrane ; Ceftriaxone ; Release system
  • 刊名:Cellulose
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:23
  • 期:1
  • 页码:737-748
  • 全文大小:7,769 KB
  • 参考文献:Abeer MM, Amin MCIM, Martin C (2014) A review of bacterial cellulose-based drug delivery systems: their biochemistry, current approaches and future prospects. J Pharm Pharmacol 66:1047–1061. doi:10.​1111/​jphp.​12234
    Arora P, Mukherjee B (2002) Design, development, physicochemical, and in vitro and in vivo evaluation of transdermal patches containing diclofenac diethyl ammonium salt. J Pharm Sci 91:2076–2089CrossRef
    Bäckdahl H, Helenius G, Bodin A, Nannmark U, Johansson BR, Risberg B, Gatenholm P (2006) Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27:2141–2149. doi:10.​1016/​j.​biomaterials.​2005.​10.​026 CrossRef
    Barud HS, Regiani T, Marques RFC, Lustri WR, Messaddeq Y, Ribeiro SJL (2011) Antimicrobial bacterial cellulose-silver nanoparticles composite membranes. J Nanomater. doi:10.​1155/​2011/​721631
    Brown RM Jr (2004) Cellulose structure and biosynthesis: what is on the store for the 21st Century? J Polym Sci A 1(42):487–495. doi:10.​1002/​pola.​10877 CrossRef
    Chang WS, Chen HH (2014) Physical properties of bacterial cellulose composites for wound dressings. Food Hydrocoll. doi:10.​1016/​j.​foodhyd.​2014.​12.​009
    Chawla PR, Bajaj IB, Survase SA, Singhal RS (2009) Microbial cellulose: fermentative production and applications. Food Technol Biotechnol 47(2):107–124
    CLSI (2014) Performance standards for antimicrobial susceptibility testing; Twenty-Fourth Informational Supplement. CLSI document M100-S24. Clinical and Laboratory Standards Institute, Wayne
    El-Saied A, El-Diwani AI, Basta AH, Atwa NA, El-Ghawas DE (2008) Production and characterization of economical bacterial cellulose. BioResources 3:1196–1217
    El-Sousi S, Nácher A, Mura C, Catalán-Latorre A, Merino V, Merino-Sanjuán M, Díez-Sales O (2013) Hydroxypropylmethylcellulose films for the ophthalmic delivery of diclofenac sodium. J Pharm Pharmacol 65:193–200. doi:10.​1111/​j.​2042-7158.​2012.​01587.​x CrossRef
    Fang JY, Sung KC, Lin HH, Fang CL (1999) Transdermal iontophoretic delivery of diclofenac sodium from various polymer formulations: in vitro and in vivo studies. Int J Pharm 178:83–92CrossRef
    Fu L, Zhang J, Yang G (2013) Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydr Polym 92:1432–1442. doi:10.​1016/​j.​carbpol.​2012.​10.​071 CrossRef
    Halib N, Amin MCIM, Ahmad I, Hashim ZM, Jamal N (2009) Swelling of bacteria cellulose-acrylic acid hydrogels: sensitivity towards external stimuli. Sains Malay 38:785–791
    Halib N, Amin MCIM, Ahmad I (2012) Physicochemical properties and characterization of nata de coco from local food industries as a source of cellulose. Sains Malays 41:205–211. doi:10.​3109/​03639045.​2013.​819882
    Hashimoto A, Shimono K, Horikawa Y, Ichikawa T, Wada M, Imai T, Sugiyama J (2011) Extraction of cellulose-synthesizing activity of Gluconacetobacter xylinus by alkylmalto side. Carbohydr Res 346:2760–2768. doi:10.​1016/​j.​carres.​2011.​09.​031 CrossRef
    Jung R, Kim Y, Kim HS, Jin HJ (2009) Antimicrobial properties of hydrated cellulose membranes with silver nanoparticles. J Biomater Sci Polym E 20:311–324. doi:10.​1163/​156856209X412182​ CrossRef
    Jung HI et al (2010) Production and characterization of cellulose by Acetobacter sp V6 using a costeffective molasses-corn steep liquor medium. Appl Biochem Biotechnol 162(2):486–497. doi:10.​1007/​s12010-009-8759-9 CrossRef
    Keshk SMAS (2014) Vitamin C enhances bacterial cellulose production in Gluconacetobacter xylinus. Carbohydr Polym 99:98–100. doi:10.​1016/​j.​carbpol.​2013.​08.​060 CrossRef
    Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Edit 44:3358–3393. doi:10.​1002/​anie.​200460587 CrossRef
    Klemm D, Schumann D, Kramer F, Heßler N, Hornung M, Schmauder HP, Marsch S (2006) Nanocellulose as innovative polymers in research and application. Adv Polym Sci 205:49–96. doi:10.​1007/​12_​097 CrossRef
    Kukharenko O, Bardeau JF, Zaets I, Ovcharenko L, Tarasyuk O, Porhyn S, Mischenko I, Vovk A, Rogalsky S, Kozyrovska N (2014) Promising low cost antimicrobial composite material based on bacterial cellulose and polyhexamethylene guanidine hydrochloride. Eur Polym J 60:247–254. doi:10.​1016/​j.​eurpolymj.​2014.​09.​014 CrossRef
    Kurosumi A et al (2009) Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohydr Polym 76:333–335. doi:10.​1016/​j.​carbpol.​2008.​11.​009 CrossRef
    Lee S, Kim SKY, Lee DY, Park K, Kumar TS, Chae SY, Byun Y (2005) Cationic analog of deoxycholate as an oral delivery carrier for ceftriaxone. J Pharm Sci 94:2541–2548. doi:10.​1002/​jps.​20478 CrossRef
    Lin S-P, Calvar IL, Catchmark JM, Liu J-R, Demirci A, Chem K-C (2013) Biosynthesis, production and applications of bacterial cellulose. Cellulose 20:2191–2219. doi:10.​1007/​s10570-013-9994-3 CrossRef
    Lustri WR, Amaral AC, Lazarini SC, Aquino R (2013) Processo de obtenção e utilização de membrane de cellulose bacteriana em bicamada como biocurativo de liberação sustentada de fármacos e suporte para crescimento celular. BR Patent 10 2013 0331073 5, INPI, 200, 1–2
    Marchessault RG, Sundararajan PR (1983) Cellulose. In: Aspinall GO (ed) The Polysaccharides, 2nd edn. Academic Press, New York, pp 11–95
    Mikkelsen D et al (2009) Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524. J Appl Microbiol 109:576–583CrossRef
    Moritz S, Wiegand C, Wesarg F, Hessler N, Müller FA, Kralisch D, Hipler UC, Fischer D (2014) Active wound dressings based on bacterial nanocellulose as drug delivery system for octenidine. Int J Pharm 471:45–55. doi:10.​1016/​j.​ijpharm.​2014.​04.​062 CrossRef
    Oshima T, Taguchi S, Ohe K, Baba Y (2011) Phosphorylated bacterial cellulose for adsorption of proteins. Carbohydr Polym 83(2):953–958. doi:10.​1016/​j.​carbpol.​2010.​09.​005 CrossRef
    Petersen N, Gatenholm P (2011) Bacterial cellulose-based materials and medical devices: current state and perspectives. Appl Microbiol Biotechnol 91(5):1277–1286. doi:10.​1007/​s00253-011-3432-y CrossRef
    Pinto RJB, Marques PAAP, Neto CP, Trindade T, Daina S, Sadocco P (2009) Antibacterial activity of nanocomposites of silver and bacterial or vegetable cellulosic fibers. Acta Biomaterialia 5:2279–2289. doi:10.​1016/​j.​actbio.​2009.​02.​003 CrossRef
    Ruka DR, Simon GP, Dean KM (2012) Altering the growth conditions of Gluconacetobacter xylinus to maximize the yield of bacterial cellulose. Carbohydr Polym 89:613–622. doi:10.​1016/​j.​carbpol.​2012.​03.​059 CrossRef
    Segal L, Creely JJ, Jr MartinAE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794. doi:10.​1177/​0040517559029010​03 CrossRef
    Shah N, Ha JH, Park JK (2010) Effect of reactor surface on production of bacterial cellulose and water soluble oligosaccharides by Gluconacetobacter hansenii PJK. Biotechnol Bioprocess Eng 15:110–118. doi:10.​1007/​s12257-009-3064-6 CrossRef
    Shah N, Ul-Islam M, Khattak WA, Park JK (2013) Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydr Polym 98:1585–1598. doi:10.​1016/​j.​carbpol.​2013.​08.​018 CrossRef
    Silva NHCS, Rodrigues AF, Almeida IF et al (2014) Bacterial cellulose membranes as transdermal delivery systems for diclofenac: in vitro dissolution and permeation studies. Carbohydr Polym 106:264–269. doi:10.​1016/​j.​carbpol.​2014.​02.​0140144-8617 CrossRef
    Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers vs. microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10(2):425–432. doi:10.​1021/​bm801193d CrossRef
    Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2:728–765. doi:10.​3390/​polym2040728 CrossRef
    Stumpf TR, Pértile RAN, Rambo CR, Porto LM (2013) Enriched glucose and dextrin mannitol-based media modulates fibroblast behavior on bacterial cellulose membranes. Mater Sci Eng, C 33:4739–4745. doi:10.​1016/​j.​msec.​2013.​07.​035 CrossRef
    Tang W, Jia S, Jia Y, Yang H (2010) The influence of fermentation conditions and post-treatment methods on porosity of bacterial cellulose membrane. World J Microbiol Biotechnol 26:125–131. doi:10.​1007/​s11274-009-0151-y CrossRef
    Trovatti E, Serafin LS, Freire CSR, Silvestre AJD, Neto CP (2011) Gluconacetobacter sacchari: an efficient bacterial cellulose cell-factory. Carbohydr Polym 86:1417–1420. doi:10.​1016/​j.​carbpol.​2011.​06.​046 CrossRef
    Ul-Islam M, Khan T, Park JK (2012) Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohydr Polym 88:596–603. doi:10.​1016/​j.​carbpol.​2012.​01.​006 CrossRef
    Ul-Islam M, Khattak WA, Kang M, Kim SM, Khan T, Park JK (2013) Effect of post-synthetic processing conditions on structural variations and applications of bacterial cellulose. Cellulose 20:253–263. doi:10.​1007/​s10570-012-9799-9 CrossRef
    Wada M, Sugiyama J, Okano T (1993) Native celluloses on the basis of two crystalline phase (Iα/Iβ) system. J Appl Polym Sci 49:1491–1496. doi:10.​1002/​app.​1993.​070490817 CrossRef
    Wang JH, Gao C, Zhang YS, Wan YZ (2010) Preparation and in vitro characterization of BC/PVA hydrogel composite for its potential use as artificial cornea biomaterial. Mater Sci Eng, C 30:214–218. doi:10.​1016/​j.​msec.​2009.​10.​006 CrossRef
    Wei B, Yanga G, Hong F (2011) Preparation and evaluation of a kind of bacterial cellulose dry films with antibacterial properties. Carbohydr Polym 84:533–538. doi:10.​1016/​j.​carbpol.​2010.​12.​017 CrossRef
    Wu J, Zheng Y, Song W, Luan J, Wen X, Wuc Z, Chen X, Wang Q, Guo S (2014) In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing. Carbohydr Polym 102:762–771. doi:10.​1016/​j.​carbpol.​2013.​10.​093 CrossRef
    Yang G, Xie J, Honga F, Cao Z, Yang X (2012) Antimicrobial activity of silver nanoparticle impregnated bacterial cellulose membrane: effect of fermentation carbon sources of bacterial cellulose. Carbohydr Polym 87:839–845. doi:10.​1016/​j.​carbpol.​2011.​08.​079 CrossRef
  • 作者单位:Silmara C. Lazarini (1)
    Renata de Aquino (1)
    André C. Amaral (1)
    Fabiana C. A. Corbi (2)
    Pedro P. Corbi (2)
    Hernane S. Barud (1)
    Wilton R. Lustri (1)

    1. Research Center of Biotechnology-UNIARA, Araraquara, SP, 14801-320, Brazil
    2. Institute of Chemistry, University of Campinas-UNICAMP, P.O. Box 6154, Campinas, SP, 13083-970, Brazil
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Bioorganic Chemistry
    Physical Chemistry
    Organic Chemistry
    Polymer Sciences
  • 出版者:Springer Netherlands
  • ISSN:1572-882X
文摘
This work describes the synthesis of bilayer bacterial cellulose membranes (BCs) produced by Gluconacetobacter hansenii ATCC 23769 in culture media with different carbon sources (sugarcane molasses, syrup and fructose) as well as their retention capacity and sustained release of the antibacterial agent ceftriaxone. Scanning electronic microscopy analysis showed that BCs produced in all culture media exhibit a double layer and three-dimensional fiber network obtained in only one step. Elemental and thermogravimetric analyses, Fourier transform infrared spectroscopy and X-ray diffraction show that the BC membranes are composed of pure cellulose. In particular, the BC produced in sugarcane molasses medium presented a three-dimensional network structure of the bilayer with high-density fiber entangling, which was responsible for the largest holding capacity and sustained release of the antibiotic ceftriaxone in relation to Staphylococcus aureus bacterial strains. This behavior shows the potential of applying such BC membranes in wound dressings as a sustained support to release different antibiotics to treat skin infections. Keywords Gluconacetobacter hansenii Bacterial cellulose membrane Ceftriaxone Release system
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.