Cholesterinrücktransport und HDL-Funktion
详细信息    查看全文
  • 作者:Prof. Dr. K. Parhofer (1)
  • 关键词:Cholesterinefflux ; Cholesterinrücktransport ; Apolipoprotein?A ; Cholesterinestertransferprotein(CETP) ; Inhibition ; Cholesterinestertransferprotein(CETP) ; Modulation ; Cholesterol efflux ; Reverse cholesterol transport ; Apolipoprotein A ; Cholesteryl ester transfer protein inhibition ; Cholesteryl ester transfer protein modulation
  • 刊名:Der Kardiologe
  • 出版年:2012
  • 出版时间:August 2012
  • 年:2012
  • 卷:6
  • 期:4
  • 页码:329-336
  • 全文大小:560KB
  • 参考文献:1. Adorni MP, Zimetti F, Billheimer JT et al (2007) The roles of different pathways in the release of cholesterol from macrophages. J Lipid Res 48:2453-462 CrossRef
    2. Al-Sarraf A, Al-Ghofaili K, Sullivan DR et al (2010) Complete Apo AI deficiency in an Iraqi Mandaean family: case studies and review of the literature. J Clin Lipidol 4:420-26 CrossRef
    3. Annema W, Nijstad N, Tolle M et al (2010) Myeloperoxidase and serum amyloid A contribute to impaired in vivo reverse cholesterol transport during the acute phase response but not group IIA secretory phospholipase A(2). J Lipid Res 51:743-54 CrossRef
    4. Ansell BJ, Fonarow GC, Fogelman AM (2007) The paradox of dysfunctional high-density lipoprotein. Curr Opin Lipidol 18:427-34 CrossRef
    5. Baigent C, Blackwell L, Emberson J et al (2010) Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet 376:1670-681 CrossRef
    6. Barter PJ, Rye KA, Tardif JC et al (2011) Effect of torcetrapib on glucose, insulin, and hemoglobin A1c in subjects in the Investigation of Lipid Level Management to Understand its Impact in Atherosclerotic Events (ILLUMINATE) trial. Circulation 124:555-62 CrossRef
    7. Calabresi L, Simonelli S, Gomaraschi M et al (2011) Genetic lecithin:cholesterol acyltransferase deficiency and cardiovascular disease. Atherosclerosis 222(2):299-306 CrossRef
    8. Camont L, Chapman MJ, Kontush A (2011) Biological activities of HDL subpopulations and their relevance to cardiovascular disease. Trends Mol Med 17:594-03 CrossRef
    9. Candini C, Schimmel AW, Peter J et al (2010) Identification and characterization of novel loss of function mutations in ATP-binding cassette transporter A1 in patients with low plasma high-density lipoprotein cholesterol. Atherosclerosis 213:492-98 CrossRef
    10. Cefalu AB, Noto D, Magnolo L et al (2009) Novel mutations of CETP gene in Italian subjects with hyperalphalipoproteinemia. Atherosclerosis 204:202-07 CrossRef
    11. Drew BG, Rye KA, Duffy SJ et al (2012) The emerging role of HDL in glucose metabolism. Nat Rev Endocrinol 8:237-45 CrossRef
    12. Franceschini G, Sirtori CR, Capurso A IInd et al (1980) A-IMilano apoprotein. Decreased high density lipoprotein cholesterol levels with significant lipoprotein modifications and without clinical atherosclerosis in an Italian family. J Clin Invest 66:892-00 CrossRef
    13. Frikke-Schmidt R, Nordestgaard BG, Stene MC et al (2008) Association of loss-of-function mutations in the ABCA1 gene with high-density lipoprotein cholesterol levels and risk of ischemic heart disease. JAMA 299:2524-532 CrossRef
    14. Grunfeld C, Feingold KR (2008) HDL and innate immunity: a tale of two apolipoproteins. J Lipid Res 49:1605-606 CrossRef
    15. Ji A, Wroblewski JM, Cai L et al (2012) Nascent HDL formation in hepatocytes and role of ABCA1, ABCG1, and SR-BI. J Lipid Res 53:446-55 CrossRef
    16. Ji J, Watts GF, Johnson AG et al (2006) High-density lipoprotein (HDL) transport in the metabolic syndrome: application of a new model for HDL particle kinetics. J Clin Endocrinol Metab 91:973-79 CrossRef
    17. Ji Y, Jian B, Wang N et al (1997) Scavenger receptor BI promotes high density lipoprotein-mediated cellular cholesterol efflux. J Biol Chem 272:20982-0985 CrossRef
    18. Khera AV, Cuchel M, De La Llera-Moya M et al (2011) Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med 364:127-35 CrossRef
    19. Kontush A, Chapman MJ (2006) Functionally defective high-density lipoprotein: a new therapeutic target at the crossroads of dyslipidemia, inflammation, and atherosclerosis. Pharmacol Rev 58:342-74 CrossRef
    20. Martinez LO, Jacquet S, Esteve JP et al (2003) Ectopic beta-chain of ATP synthase is an apolipoprotein A-I receptor in hepatic HDL endocytosis. Nature 421:75-9 CrossRef
    21. Matsuura F, Wang N, Chen W et al (2006) HDL from CETP-deficient subjects shows enhanced ability to promote cholesterol efflux from macrophages in an apoE- and ABCG1-dependent pathway. J Clin Invest 116:1435-442 CrossRef
    22. Navab M, Reddy ST, Van Lenten BJ et al (2009) The role of dysfunctional HDL in atherosclerosis. J Lipid Res 50(Suppl):S145-49 CrossRef
    23. Niesor EJ, Magg C, Ogawa N et al (2010) Modulating cholesteryl ester transfer protein activity maintains efficient pre-beta-HDL formation and increases reverse cholesterol transport. J Lipid Res 51:3443-454 CrossRef
    24. Nofer JR, Van Eck M (2011) HDL scavenger receptor class B type I and platelet function. Curr Opin Lipidol 22:277-82 CrossRef
    25. Packard CJ, Demant T, Stewart JP et al (2000) Apolipoprotein B metabolism and the distribution of VLDL and LDL subfractions. J Lipid Res 41:305-18
    26. Parhofer KG, Barrett PH (2006) Thematic review series: patient-oriented research. What we have learned about VLDL and LDL metabolism from human kinetics studies. J Lipid Res 47:1620-630 CrossRef
    27. Persegol L, Verges B, Foissac M et al (2006) Inability of HDL from type 2 diabetic patients to counteract the inhibitory effect of oxidised LDL on endothelium-dependent vasorelaxation. Diabetologia 49:1380-386 CrossRef
    28. Reiner Z, Catapano AL, De Backer G et al (2011) ESC/EAS guidelines for the management of dyslipidaemias: the Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Eur Heart J 32:1769-818 CrossRef
    29. Roselaar SE, Daugherty A (1998) Apolipoprotein E-deficient mice have impaired innate immune responses to listeria monocytogenes in vivo. J Lipid Res 39:1740-743
    30. Schmit, Barlage S (2006) High-density-Lipoproteine und Atherosklerose. In: Schwandt P, Parhofer K (Hrsg) Handbuch der Fettstoffwechselst?rungen. Schattauer, Stuttgart, S?483-18
    31. Sniderman AD, Williams K, Contois JH et al (2011) A meta-analysis of low-density lipoprotein cholesterol, non-high-density lipoprotein cholesterol, and apolipoprotein B as markers of cardiovascular risk. Circ Cardiovasc Qual Outcomes 4:337-45 CrossRef
    32. Sorrentino SA, Besler C, Rohrer L et al (2010) Endothelial-vasoprotective effects of high-density lipoprotein are impaired in patients with type 2 diabetes mellitus but are improved after extended-release niacin therapy. Circulation 121:110-22 CrossRef
    33. Tall AR (2009) The effects of cholesterol ester transfer protein inhibition on cholesterol efflux. Am J Cardiol 104:39E-5E CrossRef
    34. Terasaka N, Yu S, Yvan-Charvet L et al (2008) ABCG1 and HDL protect against endothelial dysfunction in mice fed a high-cholesterol diet. J Clin Invest 118:3701-713 CrossRef
    35. Von Eckardstein A (2006) St?rungen im Stoffwechsel der High-density-Lipoproteine. In: Schwandt P, Parhofer K (Hrsg) Handbuch der Fettstoffwechselst?rungen. Schattauer, Stuttgart, S?112-46
    36. Wang N, Lan D, Chen W et al (2004) ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoproteins. Proc Natl Acad Sci U S A 101:9774-779 CrossRef
    37. Wang Y, Zhu X, Wu G et al (2008) Effect of lipid-bound apoA-I cysteine mutants on lipopolysaccharide-induced endotoxemia in mice. J Lipid Res 49:1640-645 CrossRef
    38. Zhang Y, Da Silva JR, Reilly M et al (2005) Hepatic expression of scavenger receptor class B type I (SR-BI) is a positive regulator of macrophage reverse cholesterol transport in vivo. J Clin Invest 115:2870-874 CrossRef
  • 作者单位:Prof. Dr. K. Parhofer (1)

    1. Medizinische Klinik und Poliklinik II, Klinikum der Ludwig-Maximilians-Universit?t München, Campus Gro?hadern, Marchioninistr. 15, 81377, München, Deutschland
文摘
Changes in high-density lipoprotein (HDL) metabolism are causally linked to atherosclerosis. Knowledge about HDL metabolism is necessary to use this relationship as a therapeutic approach to address atherosclerosis. Different proteins are involved in HDL metabolism and include structural proteins, such as apolipoprotein A1 (apoA1), apoA2 and apoE, enzymes or transport proteins, such as lecithin-cholesterol acyltransferase (LCAT) or cholesteryl ester transfer protein (CETP) and cellular transporters, such as ATP-binding cassette transporter A1 (ABCA1), ATP-binding cassette transporter G1 (ABCG1) and scavenger receptor B1 (SR-B1). These components are necessary to warrant cholesterol efflux and also for the anti-inflammatory, antioxidative and antithrombotic properties of HDL. Because of the complexity of HDL metabolism it is difficult to predict whether interventions affecting HDL levels or function will be proatherogenic, antiatherogenic or neutral. However, the epidemiological as well as the genetic data indicate that modulations of the HDL system will influence atherosclerosis. Therefore, HDL modifying interventions are an interesting approach to address residual risks associated with statin therapy.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.