x Sn x )O3x Sn x )O3 powders were synthesized by solid state reaction of BaCO3, TiO2 and SnO2 at 1,050?°C. The powders were high energy ball milled to produce nanocrystalline powders having average particle size of 16?nm. The milled powders were sintered at 1,350?°C for 4?h to yield ceramics. For these ceramics, increasing Sn content from x?=?0.025-.065 produces a decrease in (1) unipolar strain level s from 0.084 to 0.027?%, and (2) electromechanical coupling factor k p from 33.6 to 19.3?%. However, the bulk density, room temperature dielectric constant and piezoelectric charge constant d 33 exhibit an increase from 5.03-.84?g/cm3, 1,342-,156 and 7-10?pC/N, respectively, with increasing Sn content. The increasing trend of density and d 33 presently observed is in sharp contrast to the result of corresponding ceramics prepared from 86?nm nanopowders. The present study reveals a cooperative mechanism involving both the nanoscale size of the starting particles and optimum tin content which results in the enhancement of d 33 with tin content." />
Size effect on piezoelectric properties of barium stannate titanate ceramics prepared from nanoparticles
详细信息    查看全文
  • 作者:K. Chandramani Singh ; Chongtham Jiten
  • 刊名:Journal of Materials Science: Materials in Electronics
  • 出版年:2013
  • 出版时间:November 2013
  • 年:2013
  • 卷:24
  • 期:11
  • 页码:4247-4252
  • 全文大小:431KB
  • 参考文献:1. Z. Yu, R. Guo, A.S. Bhalla, J. Appl. Phys. 88, 410 (2000) CrossRef
    2. J. Zhao, L. Li, Y. Wang, Z. Gui, Mater. Sci. Eng. B 99, 207 (2003) CrossRef
    3. B.D. Stojanovic, C.R. Foschini, V.B. Pavlovic, V.M. Pavlovic, V. Pejivic, J.A. Varela, Ceram. Int. 28, 293 (2002) CrossRef
    4. B. Cui, P.F. Yu, J. Tian, H.L. Guo, Z.G. Chang, Mater. Sci. Eng. A 454, 667 (2007)
    5. D. Voltzh, H.P. Abicht, Solid State Sci. 2, 149 (2000) CrossRef
    6. B. Cui, P.F. Yui, J. Tian, Z.G. Chang, Mater. Sci. Eng. B 139, 205 (2006) CrossRef
    7. W. Xiaoyong, F. Yujun, Y. Xi, Appl. Phys. Lett. 83, 2031 (2003) CrossRef
    8. S.G. Lu, Z.K. Xu, H. Chen, Appl. Phys. Lett. 85, 5319 (2004) CrossRef
    9. X. Wei, X. Yao, Mater. Sci. Eng. B 137, 184 (2007) CrossRef
    10. G.A. Smolensky, J. Phys. Soc. Jpn. 28, 26 (1970)
    11. L.E. Cross, Ferroelectrics 76, 241 (1987) CrossRef
    12. K. Uchino, J. Ceram. Soc. Jpn. 99, 829 (1991) CrossRef
    13. Y. Ishibashi, M. Iwata, J. Phys. Soc. Jpn. 65, 853 (1996) CrossRef
    14. V.A. Isupov, Ferroelectrics 90, 113 (1989) CrossRef
    15. H.H. Huang, M.C. Wang, C.Y. Chen, Mater. Sci. Eng. A 433, 279 (2006) CrossRef
    16. L.B. Kong, T.S. Zhang, J. Ma, F. Boey, Prog. Mater Sci. 53, 207 (2008) CrossRef
    17. T. Karaki, K. Yan, T. Miyamoto, M. Adachi, Jpn. J. Appl. Phys. 46, L97 (2007) CrossRef
    18. H. Takahashi, Y. Numamoto, J. Tani, K. Matsuta, J. Qiu, S. Tsurekawa, Jpn. J. Appl. Phys. 45, L30 (2006) CrossRef
    19. K. Wu, W. Schulze, J. Am. Ceram. Soc. 75, 3390 (1992) CrossRef
    20. M.H. Frey, D.A. Payne, Phys. Rev. B 54, 3158 (1996) CrossRef
    21. M. Buscaglia, Z. Zhao, V. Buscaglia, M. Viviani, M.T. Buscaglia, L. Mitoseriu, A. Testino, Nanotechnology 15, 1113 (2004) CrossRef
    22. J. Cho, M. Kuwabara, J. Eur. Ceram. Soc. 24, 2959 (2004) CrossRef
    23. H. Xu, L. Gao, J. Guo, J. Eur. Ceram. Soc. 22, 1163 (2002) CrossRef
    24. T. Venugopal, K.P. Rao, B.S. Murty, J. Nanosci. Nanotechnol. 7, 2376 (2007) CrossRef
    25. Y. Wang, Y. Li, C. Rong, P. Liu, J. Nanotechnol. 18, 46570 (2007)
    26. K. Chandramani Singh, A.K. Nath, Radhapiyari Laishram, O.P. Thakur, J. Alloys. Compd. 509, 2597 (2011) CrossRef
    27. H. Birol, D. Damjanovic, N. Setter, J. Am. Ceram. Soc. 88, 1754 (2005) CrossRef
    28. R. Zuo, J. Rodel, R. Chen, L. Li, J. Am. Ceram. Soc. 89, 2010 (2006) CrossRef
    29. B.M. Jin, S.C. Kim, Appl. Phys. A 65, 53 (1997) CrossRef
    30. F. Du, B. Cui, H. Cheng, R. Niu, Z. Chang, Mater. Res. Bull. 44, 1930 (2009) CrossRef
    31. D.F.K. Hennings, C. Metzmachera, B.S. Schreinemacher, J. Am. Ceram. Soc. 84, 179 (2001) CrossRef
    32. W. Sun, J. Appl. Phys. 100, 083503 (2006) CrossRef
    33. S. Wada, K. Yaku, H. Kakamoto, T. Tsurumi, J. Appl. Phys. 98, 014109 (2005) CrossRef
    34. H. Takahashi, Y. Numamoto, J. Tani, S. Tsurekawa, Jpn. J. Appl. Phys. 45, 7405 (2006) CrossRef
  • 作者单位:K. Chandramani Singh (1)
    Chongtham Jiten (2)

    1. Department of Physics, Sri Venkateswara College, University of Delhi, New Delhi, 110021, Delhi, India
    2. Department of Physics, Kirori Mal College, University of Delhi, New Delhi, 110007, Delhi, India
  • ISSN:1573-482X
文摘
Piezoelectric properties of Ba(Ti1?em class="a-plus-plus">x Sn x )O3 ceramics with x?=?0.025, 0.045 and 0.065, prepared from 16?nm powders, were compared with those of the corresponding ceramics obtained from 86?nm powders to see the effect of tin content and particle size of the starting powders. Ba(Ti1?em class="a-plus-plus">x Sn x )O3 powders were synthesized by solid state reaction of BaCO3, TiO2 and SnO2 at 1,050?°C. The powders were high energy ball milled to produce nanocrystalline powders having average particle size of 16?nm. The milled powders were sintered at 1,350?°C for 4?h to yield ceramics. For these ceramics, increasing Sn content from x?=?0.025-.065 produces a decrease in (1) unipolar strain level s from 0.084 to 0.027?%, and (2) electromechanical coupling factor k p from 33.6 to 19.3?%. However, the bulk density, room temperature dielectric constant and piezoelectric charge constant d 33 exhibit an increase from 5.03-.84?g/cm3, 1,342-,156 and 7-10?pC/N, respectively, with increasing Sn content. The increasing trend of density and d 33 presently observed is in sharp contrast to the result of corresponding ceramics prepared from 86?nm nanopowders. The present study reveals a cooperative mechanism involving both the nanoscale size of the starting particles and optimum tin content which results in the enhancement of d 33 with tin content.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.