Metagenomic analysis of the gut microbiota of the Timber Rattlesnake, Crotalus horridus
详细信息    查看全文
  • 作者:Richard William McLaughlin ; Philip A. Cochran ; Scot E. Dowd
  • 关键词:Timber Rattlesnake ; Crotalus horridus ; Bacterial diversity ; Metagenomes ; Reptile
  • 刊名:Molecular Biology Reports
  • 出版年:2015
  • 出版时间:July 2015
  • 年:2015
  • 卷:42
  • 期:7
  • 页码:1187-1195
  • 全文大小:797 KB
  • 参考文献:1.Clark RW (2002) Diet of the Timber Rattlesnake. J Herpetol 36:494-99View Article
    2.Clark RW (2006) Fixed videography to study predation behavior of an ambush foraging snake, Crotalus horridus. Copeia 2006:181-87View Article
    3.Reinert HK, MacGregor GA, Esch M, Bushar LM, Zappalorti RT (2011) Foraging ecology of timber rattlesnakes, Crotalus horridus. Copeia 2011:430-42View Article
    4.Wittenberg RD (2012) Foraging ecology of the timber rattlesnake (Crotalus horridus) in a fragmented agricultural landscape. Herpetol Conserv Biol 7:449-61
    5.Beaupre SJ, Zaidan F 3rd (2012) Digestive performance in the timber rattlesnake (Crotalus horridus) with reference to temperature dependence and bioenergetics cost of growth. J Herpetol 46:637-42View Article
    6.Dethlefsen L, Eckburg PB, Bik EM, Relman DA (2006) Assembly of the human intestinal microbiota. Trends Ecol Evol 21:517-23PubMed View Article
    7.Savage DC (1977) Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol 31:107-33PubMed View Article
    8.Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 102:11070-1075PubMed Central PubMed View Article
    9.Samuel BS, Shaito A, Motoike T, Rey FE, Backhed F, Manchester JK, Hammer RE, Williams SC, Crowley J, Yanagisawa M, Gordon JI (2008) Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci USA 105:16767-6772PubMed Central PubMed View Article
    10.Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC, Knight R, Gordon JI (2009) A core gut microbiome in obese and lean twins. Nature 457:480-87PubMed Central PubMed View Article
    11.Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027-031PubMed View Article
    12.Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 101:15718-5723PubMed Central PubMed View Article
    13.Crawford PA, Crowley JR, Sambandam N, Muegge BD, Costello EK, Hamady M, Knight R, Gordon JI (2009) Regulation of myocardial ketone body metabolism by the gut microbiota during nutrient deprivation. Proc Natl Acad Sci USA 106:11276-1281PubMed Central PubMed View Article
    14.Klein S, Cohn MD, Alpers DH (1998) Alimentary tract in nutrition. In: Shils ME, Olson JA, Shike M, Ross AC (eds) Modern nutrition in health and disease. Williams & Wilkins, Baltimore, p 1140
    15.Nossa CW, Oberdorf WE, Yang L, Aas JA, Paster BJ, Desantis TZ, Brodie EL, Malamud D, Poles MA, Pei Z (2010) Design of 16S rRNA gene primers for 454 pyrosequencing of the human foregut microbiome. World J Gastroenterol 16:4135-144PubMed Central PubMed View Article
    16.Ruemmele FM, Bier D, Marteau P, Rechkemmer G, Bourdet-Sicard R, Walker WA, Goulet O (2009) Clinical evidence for immunomodulatory effects of probiotic bacteria. J Pediatr Gastroenterol Nutr 48:126-41PubMed View Article
    17.Serban DE (2011) The gut microbiota in the metagenomics era: sometimes a friend, sometimes a foe. Roum Arch Microbiol Immunol 70:134-40PubMed
    18.Beaupre SJ (1996) Field metabolic rate, water flux, and energy budgets of mottled rock rattlesnakes, Crotalus lepidus, from populations. Copeia 1996:319-29View Article
    19.Beaupre SJ (2002) Modeling time-energy allocation in vipers: individual responses to environmental variation and implications for populations. In: Schuett GW, H?ggren MR, Douglas ME, Greene HW (eds) The biology of vipers. Eagle Mountain Publishing, LC, Eagle Mountain, pp 463-80
    20.Hill JG III, Hanning I, Beaupre SJ, Ricke SC, Slavik MM (2008) Denaturing gradient gel electrophoresis for the determination of bacterial species diversity in the gastrointestinal tracts of two crotaline snakes. Herpetol Rev 39:433-38
    21.Costello EK, Gordon JI, Secor SM, Knight R (2010) Postprandial remodeling of the gut microbiota in Burmese pythons. ISME J 4:1375-385PubMed Central PubMed View Article
    22.Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697-03PubMed Central PubMed
    23.Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537-541PubMed Central PubMed View Article
    24.Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelih
  • 作者单位:Richard William McLaughlin (1) (2)
    Philip A. Cochran (1)
    Scot E. Dowd (3)

    1. Biology Department, Saint Mary’s University of Minnesota, Winona, MN, 55987-1399, USA
    2. General Studies, Gateway Technical College, Kenosha, WI, 53144, USA
    3. Molecular Research LP (MR DNA), Shallowater, TX, USA
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Animal Anatomy, Morphology and Histology
    Animal Biochemistry
  • 出版者:Springer Netherlands
  • ISSN:1573-4978
文摘
Snakes are capable of surviving long periods without food. In this study we characterized the microbiota of a Timber Rattlesnake (Crotalus horridus), devoid of digesta, living in the wild. Pyrosequencing-based metagenomics were used to analyze phylogenetic and metabolic profiles with the aid of the MG-RAST server. Pyrosequencing of samples taken from the stomach, small intestine and colon yielded 691696, 957756 and 700419 high quality sequence reads. Taxonomic analysis of metagenomic reads indicated Eukarya was the most predominant domain, followed by bacteria and then viruses, for all three tissues. The most predominant phylum in the domain Bacteria was Proteobacteria for the tissues examined. Functional classifications by the subsystem database showed cluster-based subsystems were most predominant (10-5?%). Almost equally predominant (10-3?%) was carbohydrate metabolism. To identify bacteria in the colon at a finer taxonomic resolution, a 16S rRNA gene clone library was created. Proteobacteria was again found to be the most predominant phylum. The present study provides a baseline for understanding the microbial ecology of snakes living in the wild.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.