Hyperfine interactions and electron distribution in FeIIFeI and FeIFeI models for the active site of the [FeFe]?hydrogenases: M?
详细信息    查看全文
  • 作者:Sebastian A. Stoian (1)
    Chung-Hung Hsieh (2)
    Michael L. Singleton (2)
    Andrea F. Casuras (3)
    Marcetta Y. Darensbourg (2)
    Kelsey McNeely (3)
    Kurt Sweely (3)
    Codrina V. Popescu (3)
  • 关键词:M?ssbauer spectroscopy ; Hydrogenase ; Model complex ; Monovalent iron ; Hyperfine interactions
  • 刊名:Journal of Biological Inorganic Chemistry
  • 出版年:2013
  • 出版时间:August 2013
  • 年:2013
  • 卷:18
  • 期:6
  • 页码:609-622
  • 全文大小:837KB
  • 参考文献:1. Nicolet Y, Piras C, Legrand P, Hatchikian CE, Fontecilla-Camps JC (1999) Structure?7(1):13-3 CrossRef
    2. Peters JW, Lanzilotta WN, Lemon BJ, Seefeldt LC (1998) Science 282:1853-858 CrossRef
    3. Gutlich P, Bill E, Trautwein AX (2011) Mossbauer spectroscopy and transition metal chemistry. Springer, Berlin CrossRef
    4. Pereira AS, Tavares P, Moura JJGM, Huynh BH (2001) J Am Chem Soc 123:2771-782 CrossRef
    5. Popescu CV, Münck E (1999) J Am Chem Soc 121:7877-884 CrossRef
    6. Silakov A, Reijerse EJ, Albracht SP, Hatchikian CE, Lubitz W (2007) J Am Chem Soc 129(37):11447-1458 CrossRef
    7. Silakov A, Reijerse EJ, Lubitz W (2011) Eur J Inorg Chem 7:1056-066 CrossRef
    8. Erdem ?F, Schwartz L, Stein M, Silakov A, Kaur-Ghumaan S, Huang P, Ott S, Reijerse EJ, Lubitz W (2011) Angew Chem Int Ed 50(6):1439-443 CrossRef
    9. Silakov A, Shaw JL, Reijerse EJ, Lubitz W (2010) J Am Chem Soc 132(49):17578-7587 CrossRef
    10. Silakov A, Olsen MT, Sproules S, Reijerse EJ, Rauchfuss TB, Lubitz W (2012) Inorg Chem 51:8617-628 CrossRef
    11. Singleton ML, Bhuvanesh N, Reibenspies JH, Darensbourg MY (2008) Angew Chem Int Ed 47:9492-495 CrossRef
    12. Pandey AS, Harris TV, Giles LJ, Peters JW, Szilagy RK (2008) J Am Chem Soc 130:4533-540 CrossRef
    13. Rusnak FM, Adams MWW, Mortenson LE, Munck E (1987) J Biol Chem 262:38-1
    14. Adams MWW (1987) J Biol Chem 259:15054
    15. Adams MWW, Mortenson LE (1984) J Biol Chem 259:7045
    16. Zambrano IC, Kowal AT, Mortenson LE, Adams MWW (1989) J Biol Chem 264:20974
    17. Telser J, Benecky MJ, Adams MWW, Mortenson LE, Hoffman BM (1987) J Biol Chem 262:6589-594
    18. Adams MWW (1990) Biochim Biophys Acta 1020:115 CrossRef
    19. Tard C, Liu X, Ibrahim SK, Bruschi M, De Gioia L, Davies SC, Yang X, Wang L-S, Sawers G, Pickett CJ (2005) Nature 433:610-13 CrossRef
    20. Lawrence JD, Li H, Rauchfuss TB, Benard M, Rohmer M (2001) Angew Chem Int Ed 2001:1818-821
    21. Le Cloirec A, Best SP, Borg S, Davies SC, Evans DJ, Hughes DL, Pickett CJ (1999) Chem Commun 2285-286
    22. Lyon EJ, Georgakaki IP, Reibenspies JH, Darensbourg MY (1999) Angew Chem Int Ed 38:3178-180 CrossRef
    23. Lyon EJ, Georgakaki IP, Reibenspies JH, Darensbourg MY (2001) J Am Chem Soc 123:3268-278 CrossRef
    24. Schmidt M, Contakes SM, Rauchfuss TB (1999) J Am Chem Soc 121:9736-737 CrossRef
    25. Barton BE, Rauchfuss TB (2008) Inorg Chem 2008:2261-263 CrossRef
    26. Olsen MT, Rauchfuss TB, Wilson SR (2010) J Am Chem Soc 132(50):17733 v">CrossRef
    27. Darensbourg MY, Lyon EJ, Zhao X, Georgakaki IP (2003) Proc Natl Acad Sci USA 100:3683 CrossRef
    28. Lemon B, Peters JW (1999) Biochemistry 38:12969-2973 CrossRef
    29. Apfel U-P, Troegel D, Halpin Y, Tschierlei S, Uhlemann U, Gorls H, Schmitt M, Popp J, Dunne P, Venkatesan M, Coey M, Rudolph M, Vos JG, Tacke R, Weigand W (2010) Inorg Chem 49(21):10117 CrossRef
    30. Razavet M, Davies SC, Hughes DL, Barclay JE, Evans DJ, Fairhurst SA, Liu X, Pickett CJ (2003) Dalton Trans 586
    31. Lee Y, Kinney RA, Hoffman BM, Peters JC (2011) J Am Chem Soc 133(41):16366 CrossRef
    32. Lee Y, Peters JC (2011) J Am Chem Soc 133:4438-446 CrossRef
    33. Justice AK, De Gioia L, Nilges MJ, Rauchfuss TB, Wilson SR, Zampella G (2008) Inorg Chem 47(16):7405-414 CrossRef
    34. Liu T, Darensbourg MY (2007) J Am Chem Soc 129(22):7008-009 CrossRef
    35. Hsieh C-H, Erdem OF, Harman S, Singleton ML, Reijersee E, Lubitz W, Popescu CV, Reibenspies JH, Brothers S, Hall MB, Darensbourg MY (2012) J Am Chem Soc 134:13089-3102 CrossRef
    36. Münck E (2000) Physical Methods in Bioinorganic Chemistry. In: Que L Jr (ed) University Science Books, Sausalito, California pp 287-20
    37. Neese F (2002) Inorg Chim Acta 337:181-92 CrossRef
    38. Neese F (2003) J Chem Phys 118(9):3939-948 CrossRef
    39. Sinnecker S, Slep LD, Bill E, Neese F (2005) Inorg Chem 44(7):2245-254 CrossRef
    40. Stoian SA, Vela J, Smith JM, Sadique AR, Holland PL, Münck E, Bominaar EL (2006) J Am Chem Soc 128(31):10181-0192 CrossRef
    41. Frisch MJ, Trucks GWS, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K; Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2009) Gaussian 09, version B01. Gaussian, Wallingford
    42. Vr?jma?u V, Münck E, Bominaar EL (2003) Inorg Chem 42:5974-988 CrossRef
    43. Stoian SA, Yu Y, Smith JM, Holland PL, Bominaar EL, Münck E (2005) Inorg Chem 44:4915-922 CrossRef
    44. Popescu CV, Münck E, Fox BG, Sanakis Y, Cummings J, Turner IM, Nelson MJ (2001) Biochemistry 40:7984-991 CrossRef
    45. Parish RV (1978) Org Chem Iron 1:175-11 CrossRef
    46. Andersen EL, Fehlner TP, Foti DR, Salahub DR (1980) J Am Chem Soc 102:7422-429 CrossRef
    47. Fiedler AT, Brunold TC (2005) Inorg Chem 44:1794-809 CrossRef
    48. Teo BK, Hall MB, Fenske RB, Dahl LF (1975) Inorg Chem 3103-117
    49. Zhu W, Marr AC, Wang Q, Neese F, Spencer DJE, Blake AJ, Cooke PA, Wilson C, Schroder M (2005) Proc Natl Acad Sci USA 102:18280-8285 CrossRef
    50. Tye JW, Darensbourg MY, Hall MB (2006) Inorg Chem 45:1552-559 CrossRef
    51. Schilter D, Nilges MJ, Chakrabarti M, Lindahl PA, Rauchfuss TB, Stein M (2012) Inorg Chem 51:2338-351 CrossRef
    52. Fontecilla-Camps JC, Volbeda A, Cavazza C, Nicolet Y (2007) Chem Rev 107(10):4273-303 CrossRef
  • 作者单位:Sebastian A. Stoian (1)
    Chung-Hung Hsieh (2)
    Michael L. Singleton (2)
    Andrea F. Casuras (3)
    Marcetta Y. Darensbourg (2)
    Kelsey McNeely (3)
    Kurt Sweely (3)
    Codrina V. Popescu (3)

    1. Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
    2. Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
    3. Department of Chemistry, Ursinus College, Collegeville, PA, 19426, USA
文摘
M?ssbauer studies of [{μ-S(CH2C(CH3)2CH2S}(μ-CO)FeIIFeI(PMe3)2(CO)3]PF6 (1 OX ), a model complex for the oxidized state of the [FeFe]?hydrogenases, and the parent FeIFeI derivative are reported. The paramagnetic 1 OX is part of a series featuring a dimethylpropanedithiolate bridge, introducing steric hindrance with profound impact on the electronic structure of the diiron complex. Well-resolved spectra of 1 OX allow determination of the magnetic hyperfine couplings for the low-spin distal FeI ( $ {\text{Fe}}^{\text{I}} _{\text{ D}} $ Fe D I ) site, A x,y,z ?= [?4?(6),??2?(2), 20?(2)]?MHz, and the detection of significant internal fields (approximately 2.3?T) at the low-spin ferrous site, confirmed by density functional theory (DFT) calculations. M?ssbauer spectra of 1 OX show nonequivalent sites and no evidence of delocalization up to 200?K. Insight from the experimental hyperfine tensors of the FeI site is used in correlation with DFT to reveal the spatial distribution of metal orbitals. The Fe–Fe bond in [Fe2{μ-S(CH2C(CH3)2CH2S}(PMe3)2(CO)4] (1) involving two $ d_{{z^{2} }} $ d z 2 -type orbitals is crucial in keeping the structure intact in the presence of strain. On oxidation, the distal iron site is not restricted by the Fe–Fe bond, and thus the more stable isomer results from inversion of the square pyramid, rotating the $ d_{{z^{2} }} $ d z 2 orbital of $ {\text{Fe}}^{\text{I}} _{\text{ D}} $ Fe D I . DFT calculations imply that the M?ssbauer properties can be traced to this $ d_{{z^{2} }} $ d z 2 orbital. The structure of the magnetic hyperfine coupling tensor, A, of the low-spin FeI in 1 OX is discussed in the context of the known A?tensors for the oxidized states of the [FeFe]?hydrogenases.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.