An implementation of the soft-sphere discrete element method in a high-performance parallel gravity tree-code
详细信息    查看全文
  • 作者:Stephen R. Schwartz (12) srs@astro.umd.edu
    Derek C. Richardson (1)
    Patrick Michel (2)
  • 关键词:Bulk solids – ; Solar system – ; DEM – ; Hopper – ; SSDEM
  • 刊名:Granular Matter
  • 出版年:2012
  • 出版时间:May 2012
  • 年:2012
  • 卷:14
  • 期:3
  • 页码:363-380
  • 全文大小:621.5 KB
  • 参考文献:1. Yano H. et al.: Touchdown of the Hayabusa Spacecraft at the Muses Sea on Itokawa. Science 312, 1350–1353 (2006) <Occurrence Type="Bibcode"><Handle>2006Sci...312.1350Y</Handle></Occurrence>
    2. Richardson J.E., Melosh H.J., Greenberg R.J., O’Brien D.P.: The global effects of impact-induced seismic activity on fractured asteroid surface morphology. Icarus 179, 325–349 (2005) <Occurrence Type="Bibcode"><Handle>2005Icar..179..325R</Handle></Occurrence>
    3. Richardson D.C., Walsh K.J., Murdoch N., Michel P.: Numerical simulations of granular dynamics: I. Hard-sphere discrete element method and tests. Icarus 212, 427–437 (2011) <Occurrence Type="Bibcode"><Handle>2011Icar..212..427R</Handle></Occurrence>
    4. Mehta A.J.: Granular Physics. Cambridge University Press, New York (2007)
    5. Cleary P.W., Sawley M.L.: DEM modelling of industrial granular flows: 3D case studies and the effect of particle shape on hopper discharge. Appl. Math. Model. 26, 89–111 (2002)
    6. Kacianauskas R., Maknickas A., Kaceniauskas A., Markauskas D., Balevicius R.: Parallel discrete element simulation of poly-dispersed granular material. Adv. Eng. Softw. 41, 52–63 (2010)
    7. Elaskar S.A., Godoy L.A., Gray D.D., Stiles J.M.: A viscoplastic approach to model the flow of granular solids. Int. J. Solids Struct. 37, 2185–2214 (2000)
    8. Holsapple K.A.: Equilibrium figures of spinning bodies with self-gravity. Icarus 172, 272–303 (2004) <Occurrence Type="Bibcode"><Handle>2004Icar..172..272H</Handle></Occurrence>
    9. Holsapple K.A., Michel P.: Tidal disruptions. II. A continuum theory for solid bodies with strength, with applications to the solar system. Icarus 193, 283–301 (2008) <Occurrence Type="Bibcode"><Handle>2008Icar..193..283H</Handle></Occurrence>
    10. Sharma I., Jenkins J.T., Burns J.A.: Dynamical passage to approximate equilibrium shapes for spinning, gravitating rubble asteroids. Icarus 200, 304–322 (2009) <Occurrence Type="Bibcode"><Handle>2009Icar..200..304S</Handle></Occurrence>
    11. Wada K., Senshu H., Matsui T.: Numerical simulation of impact cratering on granular material. Icarus 180, 528–545 (2006) <Occurrence Type="Bibcode"><Handle>2006Icar..180..528W</Handle></Occurrence>
    12. Hong D.C., McLennan J.A.: Molecular dynamics simulations of hard sphere granular particles. Phys. A 187, 159–171 (1992)
    13. Huilin L., Yunhua Z., Ding J., Gidaspow D., Wei L.: Investigation of mixing/segregation of mixture particles in gas-solid fluidized beds. Chem. Eng. Sci. 62, 301–317 (2007)
    14. Kosinski P., Hoffmann A.C.: Extension of the hard-sphere particle-wall collision model to account for particle deposition. Phys. Rev. E 79, 061302 (2009) <Occurrence Type="Bibcode"><Handle>2009PhRvE..79f1302K</Handle></Occurrence>
    15. Tsuji Y., Tanaka T., Ishida T.: Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technol. 71, 239–250 (1992)
    16. S脿nchez P., Scheeres D.J.: Simulating asteroid rubble piles with a self-gravitating soft-sphere distinct element method model. ApJ 727, 120 (2011) <Occurrence Type="Bibcode"><Handle>2011ApJ...727..120S</Handle></Occurrence>
    17. Tancredi, G., Maciel, A., Heredia, L., Richeri, P., Nesmachnow, S.: Granular physics in low-gravity environments using DEM. MNRAS 420, 3368–3380 (2012)
    18. Gallas J.A.C., Hermann H.J., P枚schel T., Sokolowski S.: Molecular dynamics simulation of size segregation in three dimensions. J. Stat. Phys. 82, 443–450 (1996) <Occurrence Type="Bibcode"><Handle>1996JSP....82..443G</Handle></Occurrence>
    19. Silbert L.E., Ertaş D., Grest G.S., Halsey T.C., Levine D., Plimpton S.J.: Granular flow down an inclined plane: Bagnold scaling and rheology. Phys. Rev. E 64, 051302 (2001) <Occurrence Type="Bibcode"><Handle>2001PhRvE..64e1302S</Handle></Occurrence>
    20. Stadel J.: Cosmological N-body simulations and their analysis, pp. 126. University of Washington, Washington, DC (2001)
    21. Richardson D.C., Quinn T., Stadel J., Lake G.: Direct large-scale N-body simulations of planetesimal dynamics. Icarus 143, 45–59 (2000) <Occurrence Type="Bibcode"><Handle>2000Icar..143...45R</Handle></Occurrence>
    22. Richardson D.C., Michel P., Walsh K.J., Flynn K.W.: Numerical simulations of asteroids modelled as gravitational aggregates with cohesion. Planet. Space Sci. 57, 183–192 (2009) <Occurrence Type="Bibcode"><Handle>2009P&SS...57..183R</Handle></Occurrence>
    23. Cundall P.A., Strack O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 29, 47–65 (1979)
    24. Saha P., Tremaine S.: Symplectic integrators for solar system dynamics. Astron. J. 104, 1633–1640 (1992) <Occurrence Type="Bibcode"><Handle>1992AJ....104.1633S</Handle></Occurrence>
    25. Quinn T., Perrine R.P., Richardson D.C., Barnes R.: A Symplectic integrator for Hill’s equations. ApJ 139, 803–807 (2010) <Occurrence Type="Bibcode"><Handle>2010AJ....139..803Q</Handle></Occurrence>
    26. Cleary P.W.: Predicting charge motion, power draw, segregation and wear in ball mills using discrete element methods. Min. Eng. 11, 1061–1080 (1998)
    27. Zhou Y.C., Wright B.D., Yang R.Y., Xu B.H., Yu A.B.: Rolling friction in the dynamic simulation of sandpile formation. Phys. A 269, 536–553 (1999)
    28. Kahn K.M., Bushell G.: Comment on rolling friction in the dynamic simulation of sandpile formation. Phys. A 352, 522–524 (2005)
    29. Zhu H.P., Yu A.B.: A theoretical analysis of the force models in discrete element method. Powder Technol. 161, 122–129 (2006)
    30. Nedderman R.M., T眉z眉n U., Savage S.B., Houlsby G.T.: The flow of granular materials–I: discharge rates from Hoppers. Chem. Eng. Sci. 37, 1597–1609 (1982)
    31. Bertrand F., Leclaire L.-A., Levecque G.: DEM-based models for the mixing of granular materials. Chem. Eng. Sci. 60, 2517–2531 (2005)
    32. Beverloo W.A., Leniger H.A., van de Velde J.: The flow of granular solids through orifices. Chem. Eng. Sci. 15, 260–269 (1961)
    33. Janssen H.A.: Versuche 眉ber Getreidedruck in Silozellen. Ver. dt. Ing. 39, 1045–1049 (1895)
    34. Shaxby J.H., Evans J.C.: The variation of pressure with depth in columns of powders. Trans. Faraday Soc. 19, 60–72 (1923)
    35. Rose H.E., Tanaka T.: Rate of discharge of granular materials from bins and hoppers. Engineer 208, 465–469 (1959)
    36. Hofmeister, P., Blum, J., Hei脽elmann, D.: The flow of granular matter under reduced-gravity conditions. In: Nakagawa M., Luding S. (eds.) Powders and Grains 2009: Proceedings of the 6th International Conference on Micromechanics of Granular Media, Hrsg. AIP Conference Proceedings vol. 1145, pp. 71–74 (2009)
  • 作者单位:1. Department of Astronomy, University of Maryland, College Park, MD 20742-2421, USA2. Lagrange Laboratory, University of Nice Sophia Antipolis, CNRS, C么te d鈥橝zur Observatory, Observatoire de la C么te d鈥橝zur, B.P. 4229, 06304 Nice Cedex 4, France
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Granular Media
    Industrial Chemistry and Chemical Engineering
    Engineering Fluid Dynamics
    Structural Foundations and Hydraulic Engineering
    Engineering Thermodynamics and Transport Phenomena
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1434-7636
文摘
We present our implementation of the soft-sphere discrete element method (SSDEM) in the parallel gravitational N-body code pkdgrav, a well-tested simulation package that has been used to provide many successful results in the field of planetary science. The implementation of SSDEM allows for the modeling of the different contact forces between particles in granular material, such as various kinds of friction, including rolling and twisting friction, and the normal and tangential deformation of colliding particles. Such modeling is particularly important in regimes for which collisions cannot be treated as instantaneous or as occurring at a single point of contact on the particles’ surfaces, as is done in the hard-sphere discrete element method already implemented in the code. We check the validity of our soft-sphere model by reproducing successfully the dynamics of flows in a cylindrical hopper. Other tests will be performed in the future for different dynamical contexts, including the presence of external and self-gravity, as our code also includes interparticle gravitational force computations. This will then allow us to apply our tool with confidence to planetary science studies, such as those aimed at understanding the dynamics of regolith on solid celestial body surfaces, or at designing efficient sampling tools for sample-return space missions.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.