Role of frequency mismatch in neuronal communication through coherence
详细信息    查看全文
  • 作者:Belén Sancristóbal ; Raul Vicente…
  • 关键词:Gamma neuronal oscillations ; Frequency detuning ; Communication through coherence
  • 刊名:Journal of Computational Neuroscience
  • 出版年:2014
  • 出版时间:October 2014
  • 年:2014
  • 卷:37
  • 期:2
  • 页码:193-208
  • 全文大小:2,075 KB
  • 参考文献:1. Battaglia, D., Witt, A., Wolf, F., Geisel T. (2012). Dynamic effective connectivity of inter-areal brain circuits. / PLoS Computational Biology, 8.3, e1002438. doi:10.1371/journal.pcbi.1002438 . CrossRef
    2. Berens, P., Logothetis, N.K., Tolias, A.S. (2012). Visual population codes - towards a common multivariate framework for cell recording and functional imaging. In / Local field potentials, BOLD and spiking activity: relationships and physiological mechanisms (pp. 599-24). MIT Press.
    3. Bokil, H., Andrews, P., Kulkarni, J.E., Mehta, S., Mitra, P.P. (2010). Chronux: a platform for analyzing neural signals. / Journal of Neuroscience Methods, 192.1, 146-1. doi:10.1016/j.jneumeth.2010.06.020 . CrossRef
    4. Bosman, C.A., Schoffelen, J.-M., Brunet, N., Oostenveld, R., Bastos, A.M., Womelsdorf, T., Rubehn, B., Stieglitz, T., De Weerd, P., Fries, P. (2012). Attentional stimulus selection through selective synchronization between monkey visual areas. / Neuron, 75.5, 875-88. doi:10.1016/j.neuron.2012.06.037 . CrossRef
    5. Brunel, N., & Wang, X.-J. (2003). What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance. / Journal of Neurophysiology, 90.1, 415-30. doi:10.1152/jn.01095.2002 . CrossRef
    6. Buehlmann, A., & Deco, G. (2010). Optimal information transfer in the cortex through synchronization. / PLoS Computational Biology, / 6(9). doi:10.1371/journal.pcbi.1000934 .
    7. Buhl, E.H., Halasy, K., Somogyi, P. (1994). Diverse sources of hippocampal unitary inhibitory postsynaptic potentials and the number of synaptic release sites. / Nature, 368.6474, 823-28. doi:10.1038/368823a0 . CrossRef
    8. Bush, P., & Sejnowski, T. (1996). Inhibition synchronizes sparsely connected cortical neurons within and between columns in realistic network models. / Jouranl of Computational Neuroscience, 3.2, 91-10. CrossRef
    9. Buzsáki, G., Anastassiou, C.A., Koch, C. (2012). The origin of extracellular fields and currents–EEG, ECoG, LFP and spikes. / Nature Reviews Neuroscience, 13.6, 407-20. CrossRef
    10. Buzsáki, G., & Draguhn, A. (2004). Neuronal oscillations in cortical networks. / Science, 304.5679, 1926-929. doi:10.1126/science.1099745 . CrossRef
    11. Buzsáki, G., & Wang, X.-J. (2012). Mechanisms of gamma oscillations. / Annual Review of Neuroscience, 35, 203-25. doi:10.1146/annurev-neuro-062111-150444 . CrossRef
    12. Cardin, J.A., Carlén, M., Meletis, K., Knoblich, U., Zhang, F., Deisseroth, K., Tsai, L.-H., Moore, C.I. (2009). Driving fastspiking cells induces gamma rhythm and controls sensory responses. / Nature, 459.7247, 663-67. doi:10.1038/nature08002 . CrossRef
    13. Eriksson, D., Vicente, R., Schmidt, K. (2011). A linear model of phase dependent power correlations in neuronal oscillations. / Frontiers in Computational Neuroscience, 5(34). doi:10.3389/fncom.2011.00034 .
    14. Fisahn, A., Pike, F.G., Buhl, E.H., Paulsen, O. (1998). Cholinergic induction of network oscillations at 40 Hz in the hippocampus / in vitro. Nature, 394.6689, 186-89. doi:10.1038/28179 . CrossRef
    15. Fries, P. (2005). A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. / Trends in Cognitive Sciences, 9.10, 474-80. doi:10.1016/j.tics.2005.08.011 . CrossRef
    16. Garcia-Ojalvo, J., & Sancho, J.M. (1999). / Noise in spatially extended systems. New York: Springer-Verlag. CrossRef
    17. Gruber, T., Müller, M.M., Keil, A., Elbert, T. (1999). Selective visual-spatial attention alters induced gamma band responses in the human EEG. / Clinical Neurophysiology, 110.12, 2074-085. CrossRef
    18. Gutfreund, Y., Yarom, Y., Segev, I. (1995). Subthreshold oscillations and resonant frequency in guinea-pig cortical neurons: physiology and modelling. / Journal of Physiology, 483(Pt 3), 621-40.
    19. Henrie, J.A., & Shapley, R. (2005). LFP power spectra in V1 cortex: the graded effect of stimulus contrast. / Journal of Neurophysiology, 94.1, 479-90. doi:10.1152/jn.00919.2004 . CrossRef
    20. Houston, C.M., Bright, D.P., Sivilotti, L.G., Beato, M., Smart, T.G. (2009). Intracellular chloride ions regulate the time course of GABA-mediated inhibitory synaptic transmission. / Journal of Neuroscience, 29.33, 10416-0423. doi:10.1523/JNEUROSCI.1670-09.2009 . CrossRef
    21. Kang, Y., Kaneko, T., Ohishi, H., Endo, K., Araki, T. (1994). Spatiotemporally differential inhibition of pyramidal cells in the cat motor cortex. / Journal of Neurophysiology, 71.1, 280-93.
    22. Kaplan, E., Purpura, K., Shapley, R.M. (1987). Contrast affects the transmission of visual information through the mammalian lateral geniculate nucleus. / Journal of Physiology, 391, 267-88.
    23. Kawaguchi, Y., & Kubota, Y. (1997). GABAergic cell subtypes and their synaptic connections in rat frontal cortex. / Cerebral Cortex, 7.6, 476-86. CrossRef
    24. Markram, H., Toledo-Rodriguez, M., Wang, Y., Gupta, A., Silberberg, G., Wu, C. (2004). Interneurons of the neocortical inhibitory system. / Nature Reviews Neuroscience, 5.10, 793-07. doi:10.1038/nrn1519 . CrossRef
    25. Mazzoni, A., Panzeri, S., Logothetis, N.K., Brunel, N. (2008). Encoding of naturalistic stimuli by local field potential spectra in networks of excitatory and inhibitory neurons. / PLoS Computational Biology, 4.12, e1000239. doi:10.1371/journal.pcbi.1000239 . CrossRef
    26. Mountcastle, V.B. (1998). / Perceptual neuroscience: the cerebral cortex. Cambridge: Harvard University Press.
    27. Pikovsky, A., Rosenblum, M., Kurths, J. (2001). / Synchronization. A universal concept in nonlinear sciences. Cambridge University Press.
    28. Puia, G., Costa, E., Vicini, S. (1994). Functional diversity of GABA activated Cl- currents in Purkinje versus granule neurons in rat cerebellar slices. / Neuron, 12.1, 117-26. CrossRef
    29. Pulvermüller, F., Birbaumer, N., Lutzenberger, W., Mohr, B. (1997). High-frequency brain activity: its possible role in attention, perception and language processing. / Progress in Neurobiology, 52.5, 427-45. CrossRef
    30. Ray, S., & Maunsell, J.H.R. (2010). Differences in gamma frequencies across visual cortex restrict their possible use in computation. / Neuron, 67.5, 885-96. doi:10.1016/j.neuron.2010.08.004 . CrossRef
    31. Roberts, M.J., Lowet, E., Brunet, N.M., Ter Wal, M., Tiesinga, P., Fries, P., De Weerd, P. (2013). Robust gamma coherence between macaque V1 and V2 by dynamic frequency matching. / Neuron, 78.3, 523-36. doi:10.1016/j.neuron.2013.03.003 . CrossRef
    32. Roepstorff, A., & Lambert, J.D. (1994). Factors contributing to the decay of the stimulus-evoked IPSC in rat hippocampal CA1 neurons. / Journal of Neurophysiology, 72.6, 2911-926.
    33. Sancristóbal, B., Vicente, R., Sancho, J.M., Garcia-Ojalvo, J. (2013). Emergent bimodal firing patterns implement different encoding strategies during gamma-band oscillations. / Frontiers in Computational Neuroscience, 7, 18. doi:10.3389/fncom.2013.00018 . CrossRef
    34. Schoffelen, J.-M., Oostenveld, R., Fries, P. (2005). Neuronal coherence as a mechanism of effective corticospinal interaction. / Science, 308.5718, 111-13. doi:10.1126/science.1107027 . CrossRef
    35. Shadlen, M.N., & Movshon, J.A. (1999). Synchrony unbound: a critical evaluation of the temporal binding hypothesis. / Neuron, 24.1(67-7), 111-25.
    36. Singer, W. (1999). Neuronal synchrony: a versatile code for the definition of relations? / Neuron, 24.1(49-5), 111-25.
    37. Tallon-Baudry, C., Bertrand, O., Delpuech, C., Permier, J. (1997). Oscillatory gamma-band (30-70 Hz) activity induced by a visual search task in humans. / Journal of Neuroscience, 17.2, 722-34.
    38. Thomson, D.J. (1982). Spectrum estimation and harmonic analysis. In / Proceedings of the IEEE (Vol. 70.9, pp. 1055-096). doi:10.1109/PROC.1982.12433 , http://ieeexplore.ieee.org/xpls/abs?_all.jsp?arnumber=1456701.
    39. Vicente, R., Gollo, L.L., Mirasso, C.R., Fischer, I., Pipa, G. (2008). Dynamical relaying can yield zero time lag neuronal synchrony despite long conduction delays. / Proceedings of the National Academy of Sciences of the United States of America, 105.44, 17157-7162. doi:10.1073/pnas.0809353105 .
    40. Voges, N., Guijarro, C., Aertsen, A., Rotter, S. (2010a). Models of cortical networks with long-range patchy projections. / Journal of Computational Neuroscience, 28.1, 137-54. doi:10.1007/s10827-009-0193-z . CrossRef
    41. Voges, N., Schüz, A., Aertsen, A., Rotter, S. (2010b). A modeler’s view on the spatial structure of intrinsic horizontal connectivity in the neocortex. / Progress in Neurobiology, 92.3, 277-92. doi:10.1016/j.pneurobio.2010.05.001 . CrossRef
    42. Watts, D.J., & Strogatz, S.H. (1998). Collective dynamics of ’smallworld-networks. / Nature, 393.6684, 440-42. doi:10.1038/30918 . CrossRef
    43. Whittington, M.A., Traub, R.D., Jefferys, J.G. (1995). Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. / Nature, 373.6515, 612-15. doi:10.1038/373612a0 . CrossRef
    44. Womelsdorf, T., Schoffelen, J.M., Oostenveld, R., Singer, W., Desimone, R., Engel, A.K., Fries, P. (2007). Modulation of neuronal interactions through neuronal synchronization. / Science, 316.5831, 1609-612. doi:10.1126/science.1139597 . CrossRef
  • 作者单位:Belén Sancristóbal (1) (2)
    Raul Vicente (3) (4)
    Jordi Garcia-Ojalvo (1) (2)

    1. Departament of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, Barcelona, Spain
    2. Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Edif. Gaia, Terrassa, Spain
    3. Max-Planck Institute for Brain Research, Frankfurt am Main, Germany
    4. Institute of Computer Science, Faculty of Mathematics and Computer Science, University of Tartu, 50409, Tartu, Estonia
  • ISSN:1573-6873
文摘
Neuronal gamma oscillations have been described in local field potentials of different brain regions of multiple species. Gamma oscillations are thought to reflect rhythmic synaptic activity organized by inhibitory interneurons. While several aspects of gamma rhythmogenesis are relatively well understood, we have much less solid evidence about how gamma oscillations contribute to information processing in neuronal circuits. One popular hypothesis states that a flexible routing of information between distant populations occurs via the control of the phase or coherence between their respective oscillations. Here, we investigate how a mismatch between the frequencies of gamma oscillations from two populations affects their interaction. In particular, we explore a biophysical model of the reciprocal interaction between two cortical areas displaying gamma oscillations at different frequencies, and quantify their phase coherence and communication efficiency. We observed that a moderate excitatory coupling between the two areas leads to a decrease in their frequency detuning, up to ? Hz, with no frequency locking arising between the gamma peaks. Importantly, for similar gamma peak frequencies a zero phase difference emerges for both LFP and MUA despite small axonal delays. For increasing frequency detunings we found a significant decrease in the phase coherence (at non-zero phase lag) between the MUAs but not the LFPs of the two areas. Such difference between LFPs and MUAs behavior is due to the misalignment between the arrival of afferent synaptic currents and the local excitability windows. To test the efficiency of communication we evaluated the success of transferring rate-modulations between the two areas. Our results indicate that once two populations lock their peak frequencies, an optimal phase relation for communication appears. However, the sensitivity of locking to frequency mismatch suggests that only a precise and active control of gamma frequency could enable the selection of communication channels and their directionality.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.